Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

High-resolution mapping and characterization of open chromatin across the genome.

Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE.

Cell. 2008 Jan 25;132(2):311-22. doi: 10.1016/j.cell.2007.12.014.

2.

Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS).

Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, Margulies EH, Chen Y, Bernat JA, Ginsburg D, Zhou D, Luo S, Vasicek TJ, Daly MJ, Wolfsberg TG, Collins FS.

Genome Res. 2006 Jan;16(1):123-31. Epub 2005 Dec 12.

3.

DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays.

Crawford GE, Davis S, Scacheri PC, Renaud G, Halawi MJ, Erdos MR, Green R, Meltzer PS, Wolfsberg TG, Collins FS.

Nat Methods. 2006 Jul;3(7):503-9.

4.

High-throughput mapping of the chromatin structure of human promoters.

Ozsolak F, Song JS, Liu XS, Fisher DE.

Nat Biotechnol. 2007 Feb;25(2):244-8. Epub 2007 Jan 14.

PMID:
17220878
5.

Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin.

Kodama Y, Nagaya S, Shinmyo A, Kato K.

Plant Cell Physiol. 2007 Mar;48(3):459-70. Epub 2007 Feb 5.

PMID:
17283013
6.

The accessible chromatin landscape of the human genome.

Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA.

Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/nature11232.

7.

Genomic profiling of HMGN1 reveals an association with chromatin at regulatory regions.

Cuddapah S, Schones DE, Cui K, Roh TY, Barski A, Wei G, Rochman M, Bustin M, Zhao K.

Mol Cell Biol. 2011 Feb;31(4):700-9. doi: 10.1128/MCB.00740-10. Epub 2010 Dec 20.

8.
9.

Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.

Kwon SY, Grisan V, Jang B, Herbert J, Badenhorst P.

PLoS Genet. 2016 Apr 5;12(4):e1005969. doi: 10.1371/journal.pgen.1005969. eCollection 2016 Apr.

10.

Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome.

Xi H, Shulha HP, Lin JM, Vales TR, Fu Y, Bodine DM, McKay RD, Chenoweth JG, Tesar PJ, Furey TS, Ren B, Weng Z, Crawford GE.

PLoS Genet. 2007 Aug;3(8):e136. Epub 2007 Jul 2.

11.

High-throughput localization of functional elements by quantitative chromatin profiling.

Dorschner MO, Hawrylycz M, Humbert R, Wallace JC, Shafer A, Kawamoto J, Mack J, Hall R, Goldy J, Sabo PJ, Kohli A, Li Q, McArthur M, Stamatoyannopoulos JA.

Nat Methods. 2004 Dec;1(3):219-25. Epub 2004 Nov 18.

PMID:
15782197
12.

Mapping regulatory elements by DNaseI hypersensitivity chip (DNase-Chip).

Shibata Y, Crawford GE.

Methods Mol Biol. 2009;556:177-90. doi: 10.1007/978-1-60327-192-9_13.

PMID:
19488879
13.

Genome-scale mapping of DNase I hypersensitivity.

John S, Sabo PJ, Canfield TK, Lee K, Vong S, Weaver M, Wang H, Vierstra J, Reynolds AP, Thurman RE, Stamatoyannopoulos JA.

Curr Protoc Mol Biol. 2013 Jul;Chapter 27:Unit 21.27. doi: 10.1002/0471142727.mb2127s103.

14.

Mapping nucleosome positions using DNase-seq.

Zhong J, Luo K, Winter PS, Crawford GE, Iversen ES, Hartemink AJ.

Genome Res. 2016 Mar;26(3):351-64. doi: 10.1101/gr.195602.115. Epub 2016 Jan 15.

15.

Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.

Rye M, Sætrom P, Håndstad T, Drabløs F.

BMC Biol. 2011 Nov 24;9:80. doi: 10.1186/1741-7007-9-80.

16.

Genomic approaches for the discovery of CFTR regulatory elements.

Ott CJ, Harris A.

Transcription. 2011 Jan-Feb;2(1):23-7. doi: 10.4161/trns.2.1.13693.

17.
18.

ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.

Hon G, Ren B, Wang W.

PLoS Comput Biol. 2008 Oct;4(10):e1000201. doi: 10.1371/journal.pcbi.1000201. Epub 2008 Oct 17.

19.

High-resolution mapping of open chromatin in the rice genome.

Zhang W, Wu Y, Schnable JC, Zeng Z, Freeling M, Crawford GE, Jiang J.

Genome Res. 2012 Jan;22(1):151-62. doi: 10.1101/gr.131342.111. Epub 2011 Nov 22.

Supplemental Content

Support Center