Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 210

1.

Computational modeling of nanorod growth.

Grochola G, Snook IK, Russo SP.

J Chem Phys. 2007 Nov 21;127(19):194707.

PMID:
18035898
2.

The role of bromide ions in seeding growth of Au nanorods.

Garg N, Scholl C, Mohanty A, Jin R.

Langmuir. 2010 Jun 15;26(12):10271-6. doi: 10.1021/la100446q.

PMID:
20394386
3.

Growth of gold nanorods and bipyramids using CTEAB surfactant.

Kou X, Zhang S, Tsung CK, Yeung MH, Shi Q, Stucky GD, Sun L, Wang J, Yan C.

J Phys Chem B. 2006 Aug 24;110(33):16377-83.

PMID:
16913766
4.

Influence of substrate morphology on the growth of gold nanoparticles.

Grochola G, Snook IK, Russo SP.

J Chem Phys. 2008 Oct 21;129(15):154708. doi: 10.1063/1.2981051.

PMID:
19045219
5.

Structural evolution of gold nanorods during controlled secondary growth.

Keul HA, Möller M, Bockstaller MR.

Langmuir. 2007 Sep 25;23(20):10307-15. Epub 2007 Aug 22.

PMID:
17713936
6.

Monitoring gold nanorod synthesis by localized surface plasmon resonance.

Gulati A, Liao H, Hafner JH.

J Phys Chem B. 2006 Nov 16;110(45):22323-7.

PMID:
17091971
7.

On morphologies of gold nanoparticles grown from molecular dynamics simulation.

Grochola G, Russo SP, Snook IK.

J Chem Phys. 2007 Apr 28;126(16):164707.

PMID:
17477624
8.

Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles.

Stamplecoskie KG, Scaiano JC.

J Am Chem Soc. 2010 Feb 17;132(6):1825-7. doi: 10.1021/ja910010b.

PMID:
20102152
9.

Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating.

Xiang Y, Wu X, Liu D, Li Z, Chu W, Feng L, Zhang K, Zhou W, Xie S.

Langmuir. 2008 Apr 1;24(7):3465-70. doi: 10.1021/la702999c. Epub 2008 Feb 23.

PMID:
18294010
10.

Iodide in CTAB prevents gold nanorod formation.

Smith DK, Miller NR, Korgel BA.

Langmuir. 2009 Aug 18;25(16):9518-24. doi: 10.1021/la900757s.

PMID:
19413325
11.

Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

Niidome Y, Nakamura Y, Honda K, Akiyama Y, Nishioka K, Kawasaki H, Nakashima N.

Chem Commun (Camb). 2009 Apr 7;(13):1754-6. doi: 10.1039/b821402f. Epub 2009 Feb 13.

PMID:
19294285
12.

Theoretical analysis of growth of ZnO nanorods on the amorphous surfaces.

Kwon SJ, Park JG.

J Chem Phys. 2005 Jun 1;122(21):214714.

PMID:
15974769
13.
14.
15.

Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals.

Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G.

J Am Chem Soc. 2009 Jan 21;131(2):697-703. doi: 10.1021/ja804115r.

PMID:
19102696
16.

Structural properties of silver nanorods with fivefold symmetry.

Chen H, Gao Y, Yu H, Zhang H, Liu L, Shi Y, Tian H, Xie S, Li J.

Micron. 2004;35(6):469-74.

PMID:
15120132
17.

CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst.

Huang PX, Wu F, Zhu BL, Gao XP, Zhu HY, Yan TY, Huang WP, Wu SH, Song DY.

J Phys Chem B. 2005 Oct 20;109(41):19169-74.

PMID:
16853472
18.

Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects.

Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD.

Small. 2009 Mar;5(6):701-8. doi: 10.1002/smll.200801546.

PMID:
19226599
19.

The critical role of surfactants in the growth of cobalt nanoparticles.

Bao Y, An W, Turner CH, Krishnan KM.

Langmuir. 2010 Jan 5;26(1):478-83. doi: 10.1021/la902120e.

PMID:
19743830
20.

A Mechanism for Symmetry Breaking and Shape Control in Single-Crystal Gold Nanorods.

Walsh MJ, Tong W, Katz-Boon H, Mulvaney P, Etheridge J, Funston AM.

Acc Chem Res. 2017 Nov 16. doi: 10.1021/acs.accounts.7b00313. [Epub ahead of print]

PMID:
29144733

Supplemental Content

Support Center