Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.

Lung cancer: interobserver agreement on interpretation of pulmonary findings at low-dose CT screening.

Gierada DS, Pilgram TK, Ford M, Fagerstrom RM, Church TR, Nath H, Garg K, Strollo DC.

Radiology. 2008 Jan;246(1):265-72. Epub 2007 Nov 16.

PMID:
18024436
2.

Computer-aided nodule detection and volumetry to reduce variability between radiologists in the interpretation of lung nodules at low-dose screening computed tomography.

Jeon KN, Goo JM, Lee CH, Lee Y, Choo JY, Lee NK, Shim MS, Lee IS, Kim KG, Gierada DS, Bae KT.

Invest Radiol. 2012 Aug;47(8):457-61. doi: 10.1097/RLI.0b013e318250a5aa. Erratum in: Invest Radiol. 2012 Nov;47(11):675.

3.

Reader variability in identifying pulmonary nodules on chest radiographs from the national lung screening trial.

Singh SP, Gierada DS, Pinsky P, Sanders C, Fineberg N, Sun Y, Lynch D, Nath H.

J Thorac Imaging. 2012 Jul;27(4):249-54. doi: 10.1097/RTI.0b013e318256951e.

4.

Evaluation of reader variability in the interpretation of follow-up CT scans at lung cancer screening.

Singh S, Pinsky P, Fineberg NS, Gierada DS, Garg K, Sun Y, Nath PH.

Radiology. 2011 Apr;259(1):263-70. doi: 10.1148/radiol.10101254. Epub 2011 Jan 19.

5.

National lung screening trial: variability in nodule detection rates in chest CT studies.

Pinsky PF, Gierada DS, Nath PH, Kazerooni E, Amorosa J.

Radiology. 2013 Sep;268(3):865-73. doi: 10.1148/radiol.13121530. Epub 2013 Apr 16.

6.

Pulmonary nodule detection with low-dose CT of the lung: agreement among radiologists.

Leader JK, Warfel TE, Fuhrman CR, Golla SK, Weissfeld JL, Avila RS, Turner WD, Zheng B.

AJR Am J Roentgenol. 2005 Oct;185(4):973-8.

PMID:
16177418
7.

Observer Variability for Classification of Pulmonary Nodules on Low-Dose CT Images and Its Effect on Nodule Management.

van Riel SJ, Sánchez CI, Bankier AA, Naidich DP, Verschakelen J, Scholten ET, de Jong PA, Jacobs C, van Rikxoort E, Peters-Bax L, Snoeren M, Prokop M, van Ginneken B, Schaefer-Prokop C.

Radiology. 2015 Dec;277(3):863-71. doi: 10.1148/radiol.2015142700. Epub 2015 May 22.

PMID:
26020438
8.

Subsolid Lung Nodule Classification: A CT Criterion for Improving Interobserver Agreement.

Revel MP, Mannes I, Benzakoun J, Guinet C, Léger T, Grenier P, Lupo A, Fournel L, Chassagnon G, Bommart S.

Radiology. 2018 Jan;286(1):316-325. doi: 10.1148/radiol.2017170044. Epub 2017 Aug 8.

PMID:
28796590
9.

CT screening for lung cancer: alternative definitions of positive test result based on the national lung screening trial and international early lung cancer action program databases.

Yip R, Henschke CI, Yankelevitz DF, Smith JP.

Radiology. 2014 Nov;273(2):591-6. doi: 10.1148/radiol.14132950. Epub 2014 Jun 19.

PMID:
24955929
10.

Interobserver agreement for Letournel acetabular fracture classification with multidetector CT: are standard Judet radiographs necessary?

Ohashi K, El-Khoury GY, Abu-Zahra KW, Berbaum KS.

Radiology. 2006 Nov;241(2):386-91. Epub 2006 Sep 27.

PMID:
17005769
11.

Pulmonary nodules detected at lung cancer screening: interobserver variability of semiautomated volume measurements.

Gietema HA, Wang Y, Xu D, van Klaveren RJ, de Koning H, Scholten E, Verschakelen J, Kohl G, Oudkerk M, Prokop M.

Radiology. 2006 Oct;241(1):251-7. Epub 2006 Aug 14.

PMID:
16908677
12.

Pulmonary nodules on multi-detector row CT scans: performance comparison of radiologists and computer-aided detection.

Rubin GD, Lyo JK, Paik DS, Sherbondy AJ, Chow LC, Leung AN, Mindelzun R, Schraedley-Desmond PK, Zinck SE, Naidich DP, Napel S.

Radiology. 2005 Jan;234(1):274-83. Epub 2004 Nov 10.

PMID:
15537839
13.

Early invasive cervical cancer: CT and MR imaging in preoperative evaluation - ACRIN/GOG comparative study of diagnostic performance and interobserver variability.

Hricak H, Gatsonis C, Coakley FV, Snyder B, Reinhold C, Schwartz LH, Woodward PJ, Pannu HK, Amendola M, Mitchell DG.

Radiology. 2007 Nov;245(2):491-8.

PMID:
17940305
14.

CT screening for lung cancer: five-year prospective experience.

Swensen SJ, Jett JR, Hartman TE, Midthun DE, Mandrekar SJ, Hillman SL, Sykes AM, Aughenbaugh GL, Bungum AO, Allen KL.

Radiology. 2005 Apr;235(1):259-65. Epub 2005 Feb 4.

PMID:
15695622
15.

Pulmonary nodules: sensitivity of maximum intensity projection versus that of volume rendering of 3D multidetector CT data.

Peloschek P, Sailer J, Weber M, Herold CJ, Prokop M, Schaefer-Prokop C.

Radiology. 2007 May;243(2):561-9.

PMID:
17456878
16.

Differentiating between Subsolid and Solid Pulmonary Nodules at CT: Inter- and Intraobserver Agreement between Experienced Thoracic Radiologists.

Ridge CA, Yildirim A, Boiselle PM, Franquet T, Schaefer-Prokop CM, Tack D, Gevenois PA, Bankier AA.

Radiology. 2016 Mar;278(3):888-96. doi: 10.1148/radiol.2015150714. Epub 2015 Oct 9.

PMID:
26458208
17.

Early Lung Cancer Action Project: overall design and findings from baseline screening.

Henschke CI, McCauley DI, Yankelevitz DF, Naidich DP, McGuinness G, Miettinen OS, Libby DM, Pasmantier MW, Koizumi J, Altorki NK, Smith JP.

Lancet. 1999 Jul 10;354(9173):99-105.

PMID:
10408484
18.

Interobserver and intraobserver variability in the assessment of pulmonary nodule size on CT using film and computer display methods.

Bogot NR, Kazerooni EA, Kelly AM, Quint LE, Desjardins B, Nan B.

Acad Radiol. 2005 Aug;12(8):948-56.

PMID:
16087090
19.

Semiquantitative visual approach to scoring lung cancer treatment response using computed tomography: a pilot study.

Gottlieb RH, Kumar P, Loud P, Klippenstein D, Raczyk C, Tan W, Lu J, Ramnath N.

J Comput Assist Tomogr. 2009 Sep-Oct;33(5):743-7. doi: 10.1097/RCT.0b013e3181963b14.

PMID:
19820504
20.

Effect of CT image compression on computer-assisted lung nodule volume measurement.

Ko JP, Chang J, Bomsztyk E, Babb JS, Naidich DP, Rusinek H.

Radiology. 2005 Oct;237(1):83-8. Epub 2005 Aug 26.

Supplemental Content

Support Center