Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 693

1.

Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.

de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EA, Reinders MJ, Pronk JT, Heck AJ, Slijper M.

Microbiology. 2007 Nov;153(Pt 11):3864-78.

PMID:
17975095
2.

Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol.

Kolkman A, Olsthoorn MM, Heeremans CE, Heck AJ, Slijper M.

Mol Cell Proteomics. 2005 Jan;4(1):1-11. Epub 2004 Oct 23.

3.

Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity.

Jansen ML, Diderich JA, Mashego M, Hassane A, de Winde JH, Daran-Lapujade P, Pronk JT.

Microbiology. 2005 May;151(Pt 5):1657-69.

PMID:
15870473
4.
5.

Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions.

van den Brink J, Akeroyd M, van der Hoeven R, Pronk JT, de Winde JH, Daran-Lapujade P.

Microbiology. 2009 Apr;155(Pt 4):1340-50. doi: 10.1099/mic.0.025775-0.

PMID:
19332835
6.

Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae.

Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, de Winde JH, Daran JM, Pronk JT.

J Biol Chem. 2005 Jan 7;280(1):437-47. Epub 2004 Oct 20.

7.

Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.

Wiebe MG, Rintala E, Tamminen A, Simolin H, Salusjärvi L, Toivari M, Kokkonen JT, Kiuru J, Ketola RA, Jouhten P, Huuskonen A, Maaheimo H, Ruohonen L, Penttilä M.

FEMS Yeast Res. 2008 Feb;8(1):140-54. Epub 2007 Apr 10.

8.

Quantitative proteome and transcriptome analysis of the archaeon Thermoplasma acidophilum cultured under aerobic and anaerobic conditions.

Sun N, Pan C, Nickell S, Mann M, Baumeister W, Nagy I.

J Proteome Res. 2010 Sep 3;9(9):4839-50. doi: 10.1021/pr100567u.

PMID:
20669988
9.

Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.

de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F, Walther TC, Mann M.

Nature. 2008 Oct 30;455(7217):1251-4. doi: 10.1038/nature07341. Epub 2008 Sep 28.

PMID:
18820680
10.

Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae.

Abbott DA, Knijnenburg TA, de Poorter LM, Reinders MJ, Pronk JT, van Maris AJ.

FEMS Yeast Res. 2007 Sep;7(6):819-33. Epub 2007 Apr 30.

11.

Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae.

Hazelwood LA, Walsh MC, Luttik MA, Daran-Lapujade P, Pronk JT, Daran JM.

Appl Environ Microbiol. 2009 Nov;75(21):6876-85. doi: 10.1128/AEM.01464-09. Epub 2009 Sep 4.

12.

Global analysis of protein expression in yeast.

Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS.

Nature. 2003 Oct 16;425(6959):737-41.

13.

Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae.

Salusjärvi L, Poutanen M, Pitkänen JP, Koivistoinen H, Aristidou A, Kalkkinen N, Ruohonen L, Penttilä M.

Yeast. 2003 Mar;20(4):295-314.

14.

The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.

Pham TK, Wright PC.

J Proteome Res. 2008 Nov;7(11):4766-74. doi: 10.1021/pr800331s. Epub 2008 Sep 23.

PMID:
18808174
15.

Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study.

Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, Pronk JT.

J Biol Chem. 2004 Mar 5;279(10):9125-38. Epub 2003 Nov 20.

16.

Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.

van Maris AJ, Bakker BM, Brandt M, Boorsma A, Teixeira de Mattos MJ, Grivell LA, Pronk JT, Blom J.

FEMS Yeast Res. 2001 Jul;1(2):139-49.

17.

Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale.

Beyer A, Hollunder J, Nasheuer HP, Wilhelm T.

Mol Cell Proteomics. 2004 Nov;3(11):1083-92. Epub 2004 Aug 23.

18.

Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision.

Rintala E, Wiebe MG, Tamminen A, Ruohonen L, Penttilä M.

BMC Microbiol. 2008 Mar 28;8:53. doi: 10.1186/1471-2180-8-53.

19.

A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions.

Helbig AO, de Groot MJ, van Gestel RA, Mohammed S, de Hulster EA, Luttik MA, Daran-Lapujade P, Pronk JT, Heck AJ, Slijper M.

Proteomics. 2009 Oct;9(20):4787-98. doi: 10.1002/pmic.200800951.

PMID:
19750512
20.

Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae.

Rintala E, Toivari M, Pitkänen JP, Wiebe MG, Ruohonen L, Penttilä M.

BMC Genomics. 2009 Oct 5;10:461. doi: 10.1186/1471-2164-10-461.

Supplemental Content

Support Center