Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Interactions of methylene blue with human disulfide reductases and their orthologues from Plasmodium falciparum.

Buchholz K, Schirmer RH, Eubel JK, Akoachere MB, Dandekar T, Becker K, Gromer S.

Antimicrob Agents Chemother. 2008 Jan;52(1):183-91. Epub 2007 Oct 29.

2.

Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.

Haynes RK, Chan WC, Wong HN, Li KY, Wu WK, Fan KM, Sung HH, Williams ID, Prosperi D, Melato S, Coghi P, Monti D.

ChemMedChem. 2010 Aug 2;5(8):1282-99. doi: 10.1002/cmdc.201000225.

PMID:
20629071
3.

Interactions of the antimalarial drug methylene blue with methemoglobin and heme targets in Plasmodium falciparum: a physico-biochemical study.

Blank O, Davioud-Charvet E, Elhabiri M.

Antioxid Redox Signal. 2012 Aug 15;17(4):544-54. doi: 10.1089/ars.2011.4239. Epub 2012 Jan 18.

PMID:
22256987
4.

Cytotoxic interactions of methylene blue with trypanosomatid-specific disulfide reductases and their dithiol products.

Buchholz K, Comini MA, Wissenbach D, Schirmer RH, Krauth-Siegel RL, Gromer S.

Mol Biochem Parasitol. 2008 Jul;160(1):65-9. doi: 10.1016/j.molbiopara.2008.03.006. Epub 2008 Mar 21.

PMID:
18448175
5.

The bacterial redox signaller pyocyanin as an antiplasmodial agent: comparisons with its thioanalog methylene blue.

Kasozi DM, Gromer S, Adler H, Zocher K, Rahlfs S, Wittlin S, Fritz-Wolf K, Schirmer RH, Becker K.

Redox Rep. 2011;16(4):154-65. doi: 10.1179/174329211X13049558293678.

PMID:
21888766
6.

Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways.

Atamna H, Nguyen A, Schultz C, Boyle K, Newberry J, Kato H, Ames BN.

FASEB J. 2008 Mar;22(3):703-12. Epub 2007 Oct 10.

PMID:
17928358
7.
8.

Plasmoredoxin, a novel redox-active protein unique for malarial parasites.

Becker K, Kanzok SM, Iozef R, Fischer M, Schirmer RH, Rahlfs S.

Eur J Biochem. 2003 Mar;270(6):1057-64.

9.

A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum.

Snider GW, Dustin CM, Ruggles EL, Hondal RJ.

Biochemistry. 2014 Jan 28;53(3):601-9. doi: 10.1021/bi400931k. Epub 2014 Jan 17.

10.

Thioredoxin and glutathione systems in Plasmodium falciparum.

Jortzik E, Becker K.

Int J Med Microbiol. 2012 Oct;302(4-5):187-94. doi: 10.1016/j.ijmm.2012.07.007. Epub 2012 Aug 29. Review.

PMID:
22939033
11.

The mechanism of high Mr thioredoxin reductase from Drosophila melanogaster.

Bauer H, Massey V, Arscott LD, Schirmer RH, Ballou DP, Williams CH Jr.

J Biol Chem. 2003 Aug 29;278(35):33020-8. Epub 2003 Jun 19.

12.

Reactions of antimalarial peroxides with each of leucomethylene blue and dihydroflavins: flavin reductase and the cofactor model exemplified.

Haynes RK, Cheu KW, Tang MM, Chen MJ, Guo ZF, Guo ZH, Coghi P, Monti D.

ChemMedChem. 2011 Feb 7;6(2):279-91. doi: 10.1002/cmdc.201000508. Epub 2010 Dec 23.

PMID:
21275052
13.

Reduction and uptake of methylene blue by human erythrocytes.

May JM, Qu ZC, Cobb CE.

Am J Physiol Cell Physiol. 2004 Jun;286(6):C1390-8. Epub 2004 Feb 18.

PMID:
14973146
14.

Redox and antioxidant systems of the malaria parasite Plasmodium falciparum.

Müller S.

Mol Microbiol. 2004 Sep;53(5):1291-305. Review.

15.

Verapamil-Sensitive Transport of Quinacrine and Methylene Blue via the Plasmodium falciparum Chloroquine Resistance Transporter Reduces the Parasite's Susceptibility to these Tricyclic Drugs.

van Schalkwyk DA, Nash MN, Shafik SH, Summers RL, Lehane AM, Smith PJ, Martin RE.

J Infect Dis. 2016 Mar 1;213(5):800-10. doi: 10.1093/infdis/jiv509. Epub 2015 Oct 26.

PMID:
26503982
16.

Methylene blue as an antimalarial agent.

Schirmer RH, Coulibaly B, Stich A, Scheiwein M, Merkle H, Eubel J, Becker K, Becher H, Müller O, Zich T, Schiek W, Kouyaté B.

Redox Rep. 2003;8(5):272-5. Review.

PMID:
14962363
17.

Thioredoxin reductase from the malaria mosquito Anopheles gambiae.

Bauer H, Gromer S, Urbani A, Schnölzer M, Schirmer RH, Müller HM.

Eur J Biochem. 2003 Nov;270(21):4272-81.

18.

Thioredoxin reductase from Plasmodium falciparum: evidence for interaction between the C-terminal cysteine residues and the active site disulfide-dithiol.

Wang PF, Arscott LD, Gilberger TW, Müller S, Williams CH Jr.

Biochemistry. 1999 Mar 9;38(10):3187-96.

PMID:
10074374
19.

Kinetic determinants of the interaction of enoyl-ACP reductase from Plasmodium falciparum with its substrates and inhibitors.

Kapoor M, Dar MJ, Surolia A, Surolia N.

Biochem Biophys Res Commun. 2001 Dec 14;289(4):832-7.

PMID:
11735121
20.

The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited.

Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K.

J Biol Chem. 2000 Dec 22;275(51):40180-6.

Supplemental Content

Support Center