Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 168

1.

A microtubule-based, dynein-dependent force induces local cell protrusions: Implications for neurite initiation.

Dehmelt L, Nalbant P, Steffen W, Halpain S.

Brain Cell Biol. 2006 Feb;35(1):39-56. Epub 2007 Mar 13.

PMID:
17940912
2.
3.
4.

The initiation of neurite outgrowth by sympathetic neurons grown in vitro does not depend on assembly of microtubules.

Smith CL.

J Cell Biol. 1994 Dec;127(5):1407-18. Erratum in: J Cell Biol 1995 Feb;128(3):443.

5.

MAP2c, but not tau, binds and bundles F-actin via its microtubule binding domain.

Roger B, Al-Bassam J, Dehmelt L, Milligan RA, Halpain S.

Curr Biol. 2004 Mar 9;14(5):363-71.

6.

Microtubule stability and MAP1B upregulation control neuritogenesis in CAD cells.

Li W, Xia JT, Feng Y.

Acta Pharmacol Sin. 2006 Sep;27(9):1119-26.

7.

Serum-induced neurite retraction in CAD cells--involvement of an ATP-actin retractile system and the lack of microtubule-associated proteins.

Chesta ME, Carbajal A, Arce CA, Bisig CG.

FEBS J. 2014 Nov;281(21):4767-78. doi: 10.1111/febs.12967. Epub 2014 Sep 6.

8.

A morphometric screen identifies specific roles for microtubule-regulating genes in neuronal development of P19 stem cells.

Arens J, Duong TT, Dehmelt L.

PLoS One. 2013 Nov 18;8(11):e79796. doi: 10.1371/journal.pone.0079796. eCollection 2013.

9.

Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells.

Sayas CL, Tortosa E, Bollati F, Ramírez-Ríos S, Arnal I, Avila J.

J Neurochem. 2015 Jun;133(5):653-67. doi: 10.1111/jnc.13091. Epub 2015 Apr 8.

10.

Actin and microtubules in neurite initiation: are MAPs the missing link?

Dehmelt L, Halpain S.

J Neurobiol. 2004 Jan;58(1):18-33. Review.

11.
13.

Microtubule-associated type II protein kinase A is important for neurite elongation.

Huang YA, Kao JW, Tseng DT, Chen WS, Chiang MH, Hwang E.

PLoS One. 2013 Aug 13;8(8):e73890. doi: 10.1371/journal.pone.0073890. eCollection 2013.

14.

The GSK3-MAP1B pathway controls neurite branching and microtubule dynamics.

Barnat M, Benassy MN, Vincensini L, Soares S, Fassier C, Propst F, Andrieux A, von Boxberg Y, Nothias F.

Mol Cell Neurosci. 2016 Apr;72:9-21. doi: 10.1016/j.mcn.2016.01.001. Epub 2016 Jan 8.

PMID:
26773468
15.

Cytoskeletal self-organization in neuromorphogenesis.

Dehmelt L.

Bioarchitecture. 2014 Mar-Apr;4(2):75-80. doi: 10.4161/bioa.29070. Epub 2014 May 21.

16.

Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1.

Smith DS, Niethammer M, Ayala R, Zhou Y, Gambello MJ, Wynshaw-Boris A, Tsai LH.

Nat Cell Biol. 2000 Nov;2(11):767-75.

PMID:
11056530
17.

Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation.

Zheng J, Buxbaum RE, Heidemann SR.

J Cell Sci. 1993 Apr;104 ( Pt 4):1239-50.

18.

CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity.

Arimura N, Hattori A, Kimura T, Nakamuta S, Funahashi Y, Hirotsune S, Furuta K, Urano T, Toyoshima YY, Kaibuchi K.

J Neurochem. 2009 Oct;111(2):380-90. doi: 10.1111/j.1471-4159.2009.06317.x. Epub 2009 Jul 31.

19.

Ndel1 palmitoylation: a new mean to regulate cytoplasmic dynein activity.

Shmueli A, Segal M, Sapir T, Tsutsumi R, Noritake J, Bar A, Sapoznik S, Fukata Y, Orr I, Fukata M, Reiner O.

EMBO J. 2010 Jan 6;29(1):107-19. doi: 10.1038/emboj.2009.325. Epub 2009 Nov 19.

20.

Dynein interacts with the neural cell adhesion molecule (NCAM180) to tether dynamic microtubules and maintain synaptic density in cortical neurons.

Perlson E, Hendricks AG, Lazarus JE, Ben-Yaakov K, Gradus T, Tokito M, Holzbaur EL.

J Biol Chem. 2013 Sep 27;288(39):27812-24. doi: 10.1074/jbc.M113.465088. Epub 2013 Aug 19.

Supplemental Content

Support Center