Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Phonon driven nonlinear electrical behavior in molecular devices.

La Magna A, Deretzis I.

Phys Rev Lett. 2007 Sep 28;99(13):136404. Epub 2007 Sep 28.

PMID:
17930617
2.

Dissipative time-dependent quantum transport theory.

Zhang Y, Yam CY, Chen G.

J Chem Phys. 2013 Apr 28;138(16):164121. doi: 10.1063/1.4802592.

PMID:
23635125
3.

Phonon-assisted spin-polarized tunneling through an interacting quantum dot.

Rudziński W.

J Phys Condens Matter. 2008 Jul 9;20(27):275214. doi: 10.1088/0953-8984/20/27/275214. Epub 2008 Jun 4.

PMID:
21694375
4.

[Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].

Xiao JL.

Guang Pu Xue Yu Guang Pu Fen Xi. 2009 Mar;29(3):598-601. Chinese.

PMID:
19455781
5.

The temperature dependence of vibronic lineshapes: linear electron-phonon coupling.

Roos C, Köhn A, Gauss J, Diezemann G.

J Chem Phys. 2014 Oct 21;141(15):154110. doi: 10.1063/1.4898081.

PMID:
25338884
6.

Transient currents of a single molecular junction with a vibrational mode.

Ding GH, Xiong B, Dong B.

J Phys Condens Matter. 2016 Feb 17;28(6):065301. doi: 10.1088/0953-8984/28/6/065301. Epub 2016 Jan 21.

PMID:
26795556
7.

Formation of a protected sub-band for conduction in quantum point contacts under extreme biasing.

Lee J, Han JE, Xiao S, Song J, Reno JL, Bird JP.

Nat Nanotechnol. 2014 Feb;9(2):101-5. doi: 10.1038/nnano.2013.297. Epub 2014 Jan 19.

PMID:
24441984
8.

Electron-phonon interactions and the intrinsic electrical resistivity of graphene.

Park CH, Bonini N, Sohier T, Samsonidze G, Kozinsky B, Calandra M, Mauri F, Marzari N.

Nano Lett. 2014 Mar 12;14(3):1113-9. doi: 10.1021/nl402696q. Epub 2014 Feb 13.

PMID:
24524418
9.

Phonon affected transport through molecular quantum dots.

Loos J, Koch T, Alvermann A, Bishop AR, Fehske H.

J Phys Condens Matter. 2009 Sep 30;21(39):395601. doi: 10.1088/0953-8984/21/39/395601. Epub 2009 Sep 1.

PMID:
21832393
10.

Many-body effects on the transport properties of single-molecule devices.

Cornaglia PS, Ness H, Grempel DR.

Phys Rev Lett. 2004 Oct 1;93(14):147201. Epub 2004 Sep 27.

PMID:
15524835
11.

Importance of Polaronic Effects for Charge Transport in CdSe Quantum Dot Solids.

Prodanović N, Vukmirović N, Ikonić Z, Harrison P, Indjin D.

J Phys Chem Lett. 2014 Apr 17;5(8):1335-40. doi: 10.1021/jz500086c. Epub 2014 Mar 31.

PMID:
26269977
12.

Possible formation of chiral polarons in graphene.

Kandemir BS.

J Phys Condens Matter. 2013 Jan 16;25(2):025302. doi: 10.1088/0953-8984/25/2/025302. Epub 2012 Nov 29.

PMID:
23196977
13.

Reduced density matrix hybrid approach: an efficient and accurate method for adiabatic and non-adiabatic quantum dynamics.

Berkelbach TC, Reichman DR, Markland TE.

J Chem Phys. 2012 Jan 21;136(3):034113. doi: 10.1063/1.3671372.

PMID:
22280750
14.

Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.

Gabor NM.

Acc Chem Res. 2013 Jun 18;46(6):1348-57. doi: 10.1021/ar300189j. Epub 2013 Jan 31.

PMID:
23369453
15.
16.

Breakdown of the adiabatic Born-Oppenheimer approximation in graphene.

Pisana S, Lazzeri M, Casiraghi C, Novoselov KS, Geim AK, Ferrari AC, Mauri F.

Nat Mater. 2007 Mar;6(3):198-201. Epub 2007 Feb 11.

PMID:
17293849
17.
18.

Electron-phonon coupling spectrum in photodoped pentacene crystals.

Lee M, Schön JH, Kloc C, Batlogg B.

Phys Rev Lett. 2001 Jan 29;86(5):862-5.

PMID:
11177959
19.

Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths.

Sääskilahti K, Oksanen J, Tulkki J.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):012128. Epub 2013 Jul 22.

PMID:
23944435
20.

Thermodynamics of the polaron master equation at finite bias.

Krause T, Brandes T, Esposito M, Schaller G.

J Chem Phys. 2015 Apr 7;142(13):134106. doi: 10.1063/1.4916359.

PMID:
25854227

Supplemental Content

Support Center