Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G.

Chen KM, Martemyanova N, Lu Y, Shindo K, Matsuo H, Harris RS.

FEBS Lett. 2007 Oct 2;581(24):4761-6. Epub 2007 Sep 7.

2.

Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G.

Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y, Shindo K, Harris RS, Matsuo H.

Nature. 2008 Mar 6;452(7183):116-9. doi: 10.1038/nature06638. Epub 2008 Feb 20.

PMID:
18288108
3.

Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications.

Holden LG, Prochnow C, Chang YP, Bransteitter R, Chelico L, Sen U, Stevens RC, Goodman MF, Chen XS.

Nature. 2008 Nov 6;456(7218):121-4. doi: 10.1038/nature07357. Epub 2008 Oct 12.

4.

An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model.

Harjes E, Gross PJ, Chen KM, Lu Y, Shindo K, Nowarski R, Gross JD, Kotler M, Harris RS, Matsuo H.

J Mol Biol. 2009 Jun 26;389(5):819-32. doi: 10.1016/j.jmb.2009.04.031. Epub 2009 Apr 21.

5.

The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD, and human immunodeficiency virus type 1 restriction.

Schumacher AJ, Haché G, Macduff DA, Brown WL, Harris RS.

J Virol. 2008 Mar;82(6):2652-60. doi: 10.1128/JVI.02391-07. Epub 2008 Jan 9.

6.

Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA.

Lu X, Zhang T, Xu Z, Liu S, Zhao B, Lan W, Wang C, Ding J, Cao C.

J Biol Chem. 2015 Feb 13;290(7):4010-21. doi: 10.1074/jbc.M114.624262. Epub 2014 Dec 25.

7.

RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1.

Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH.

PLoS Pathog. 2009 Mar;5(3):e1000330. doi: 10.1371/journal.ppat.1000330. Epub 2009 Mar 6.

8.

The local dinucleotide preference of APOBEC3G can be altered from 5'-CC to 5'-TC by a single amino acid substitution.

Rathore A, Carpenter MA, Demir Ö, Ikeda T, Li M, Shaban NM, Law EK, Anokhin D, Brown WL, Amaro RE, Harris RS.

J Mol Biol. 2013 Nov 15;425(22):4442-54. doi: 10.1016/j.jmb.2013.07.040. Epub 2013 Aug 11.

9.

Model structure of human APOBEC3G.

Zhang KL, Mangeat B, Ortiz M, Zoete V, Trono D, Telenti A, Michielin O.

PLoS One. 2007 Apr 18;2(4):e378.

10.

RNA-binding residues in the N-terminus of APOBEC3G influence its DNA sequence specificity and retrovirus restriction efficiency.

Bélanger K, Langlois MA.

Virology. 2015 Sep;483:141-8. doi: 10.1016/j.virol.2015.04.019. Epub 2015 May 15.

11.

NMR assignments and the identification of the secondary structure of the anti-retroviral cytidine deaminase.

Furukawa A, Nagata T, Habu Y, Sugiyama R, Hayashi F, Yokoyama S, Takaku H, Katahira M.

Nucleic Acids Symp Ser (Oxf). 2008;(52):183-4. doi: 10.1093/nass/nrn093.

PMID:
18776314
12.

Intensity of deoxycytidine deamination of HIV-1 proviral DNA by the retroviral restriction factor APOBEC3G is mediated by the noncatalytic domain.

Feng Y, Chelico L.

J Biol Chem. 2011 Apr 1;286(13):11415-26. doi: 10.1074/jbc.M110.199604. Epub 2011 Feb 7.

13.

Structure and real-time monitoring of the enzymatic reaction of APOBEC3G which is involved in anti-HIV activity.

Furukawa A, Nagata T, Matsugami A, Habu Y, Sugiyama R, Hayashi F, Kobayashi N, Yokoyama S, Takaku H, Katahira M.

Nucleic Acids Symp Ser (Oxf). 2009;(53):87-8. doi: 10.1093/nass/nrp044.

PMID:
19749273
14.

Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G.

Chelico L, Pham P, Petruska J, Goodman MF.

J Biol Chem. 2009 Oct 9;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub 2009 Aug 13. Review.

15.

APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

Nowarski R, Wilner OI, Cheshin O, Shahar OD, Kenig E, Baraz L, Britan-Rosich E, Nagler A, Harris RS, Goldberg M, Willner I, Kotler M.

Blood. 2012 Jul 12;120(2):366-75. doi: 10.1182/blood-2012-01-402123. Epub 2012 May 29.

16.

Two regions within the amino-terminal half of APOBEC3G cooperate to determine cytoplasmic localization.

Stenglein MD, Matsuo H, Harris RS.

J Virol. 2008 Oct;82(19):9591-9. doi: 10.1128/JVI.02471-07. Epub 2008 Jul 30.

17.

N-terminal and C-terminal cytosine deaminase domain of APOBEC3G inhibit hepatitis B virus replication.

Lei YC, Tian YJ, Ding HH, Wang BJ, Yang Y, Hao YH, Zhao XP, Lu MJ, Gong FL, Yang DL.

World J Gastroenterol. 2006 Dec 14;12(46):7488-96.

18.

Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces.

Shandilya SM, Nalam MN, Nalivaika EA, Gross PJ, Valesano JC, Shindo K, Li M, Munson M, Royer WE, Harjes E, Kono T, Matsuo H, Harris RS, Somasundaran M, Schiffer CA.

Structure. 2010 Jan 13;18(1):28-38. doi: 10.1016/j.str.2009.10.016.

20.

APOBEC2 is a monomer in solution: implications for APOBEC3G models.

Krzysiak TC, Jung J, Thompson J, Baker D, Gronenborn AM.

Biochemistry. 2012 Mar 6;51(9):2008-17. doi: 10.1021/bi300021s. Epub 2012 Feb 27.

Supplemental Content

Support Center