Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Structural and thermodynamic analyses of the interaction between melittin and lipopolysaccharide.

Bhunia A, Domadia PN, Bhattacharjya S.

Biochim Biophys Acta. 2007 Dec;1768(12):3282-91. Epub 2007 Aug 9.

2.

Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.

Klocek G, Schulthess T, Shai Y, Seelig J.

Biochemistry. 2009 Mar 31;48(12):2586-96. doi: 10.1021/bi802127h.

PMID:
19173655
3.

NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization.

Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S.

J Biol Chem. 2010 Feb 5;285(6):3883-95. doi: 10.1074/jbc.M109.065672. Epub 2009 Dec 3.

4.

Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer: implications in cell selective lysis by D-amino acid containing antimicrobial peptides.

Saravanan R, Bhunia A, Bhattacharjya S.

Biochim Biophys Acta. 2010 Feb;1798(2):128-39. doi: 10.1016/j.bbamem.2009.07.014. Epub 2009 Jul 25.

5.

NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane.

Saravanan R, Joshi M, Mohanram H, Bhunia A, Mangoni ML, Bhattacharjya S.

PLoS One. 2013 Sep 9;8(9):e72718. doi: 10.1371/journal.pone.0072718. eCollection 2013.

8.

Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy.

Baek MH, Kamiya M, Kushibiki T, Nakazumi T, Tomisawa S, Abe C, Kumaki Y, Kikukawa T, Demura M, Kawano K, Aizawa T.

J Pept Sci. 2016 Apr;22(4):214-21. doi: 10.1002/psc.2865. Epub 2016 Mar 4.

PMID:
26939541
9.

Structural and thermodynamic aspects of the interaction between heparan sulfate and analogues of melittin.

Gonçalves E, Kitas E, Seelig J.

Biochemistry. 2006 Mar 7;45(9):3086-94.

PMID:
16503664
10.

NMR structure and binding of esculentin-1a (1-21)NH2 and its diastereomer to lipopolysaccharide: Correlation with biological functions.

Ghosh A, Bera S, Shai Y, Mangoni ML, Bhunia A.

Biochim Biophys Acta. 2016 Apr;1858(4):800-12. doi: 10.1016/j.bbamem.2015.12.027. Epub 2015 Dec 23.

11.

Melittin interaction with sulfated cell surface sugars.

Klocek G, Seelig J.

Biochemistry. 2008 Mar 4;47(9):2841-9. doi: 10.1021/bi702258z. Epub 2008 Jan 26.

PMID:
18220363
12.
13.

Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization.

Domadia PN, Bhunia A, Ramamoorthy A, Bhattacharjya S.

J Am Chem Soc. 2010 Dec 29;132(51):18417-28. doi: 10.1021/ja1083255. Epub 2010 Dec 3.

PMID:
21128620
14.
15.
16.

Fluorescence-quenching-resolved spectra of melittin in lipid bilayers.

Kaszycki P, Wasylewski Z.

Biochim Biophys Acta. 1990 Sep 27;1040(3):337-45.

PMID:
2223839
17.
18.

Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin.

Ladokhin AS, White SH.

J Mol Biol. 1999 Jan 29;285(4):1363-9.

PMID:
9917380
20.

Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control.

Datta A, Bhattacharyya D, Singh S, Ghosh A, Schmidtchen A, Malmsten M, Bhunia A.

J Biol Chem. 2016 Jun 17;291(25):13301-17. doi: 10.1074/jbc.M116.719575. Epub 2016 May 2.

Supplemental Content

Support Center