Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Global phenotype screening and transcript analysis outlines the inhibitory mode(s) of action of two amphibian-derived, alpha-helical, cationic peptides on Saccharomyces cerevisiae.

Morton CO, Hayes A, Wilson M, Rash BM, Oliver SG, Coote P.

Antimicrob Agents Chemother. 2007 Nov;51(11):3948-59. Epub 2007 Sep 10.

2.
3.
4.

Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae.

Agarwal AK, Rogers PD, Baerson SR, Jacob MR, Barker KS, Cleary JD, Walker LA, Nagle DG, Clark AM.

J Biol Chem. 2003 Sep 12;278(37):34998-5015. Epub 2003 Jun 24.

5.

A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides.

López-García B, Gandía M, Muñoz A, Carmona L, Marcos JF.

BMC Microbiol. 2010 Nov 15;10:289. doi: 10.1186/1471-2180-10-289.

6.

Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: potent activity against oral pathogens.

McLean DT, McCrudden MT, Linden GJ, Irwin CR, Conlon JM, Lundy FT.

Regul Pept. 2014 Nov;194-195:63-8. doi: 10.1016/j.regpep.2014.11.002. Epub 2014 Nov 13.

PMID:
25447193
7.

Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.

Jo WJ, Loguinov A, Chang M, Wintz H, Nislow C, Arkin AP, Giaever G, Vulpe CD.

Toxicol Sci. 2008 Jan;101(1):140-51. Epub 2007 Sep 4. Erratum in: Toxicol Sci. 2008 Mar;102(1):205.

PMID:
17785683
8.
9.

Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.

Galanth C, Abbassi F, Lequin O, Ayala-Sanmartin J, Ladram A, Nicolas P, Amiche M.

Biochemistry. 2009 Jan 20;48(2):313-27. doi: 10.1021/bi802025a.

PMID:
19113844
10.

Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides.

Amiche M, Galanth C.

Curr Pharm Biotechnol. 2011 Aug;12(8):1184-93. Review.

PMID:
21470155
11.

Esculentin-1b(1-18)--a membrane-active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in Escherichia coli.

Marcellini L, Borro M, Gentile G, Rinaldi AC, Stella L, Aimola P, Barra D, Mangoni ML.

FEBS J. 2009 Oct;276(19):5647-64. doi: 10.1111/j.1742-4658.2009.07257.x. Epub 2009 Sep 2.

12.

Expression profiling of the response of Saccharomyces cerevisiae to 5-fluorocytosine using a DNA microarray.

Zhang L, Zhang Y, Zhou Y, Zhao Y, Zhou Y, Cheng J.

Int J Antimicrob Agents. 2002 Dec;20(6):444-50.

PMID:
12458139
13.

Inhibitory action of a truncated derivative of the amphibian skin peptide dermaseptin s3 on Saccharomyces cerevisiae.

Coote PJ, Holyoak CD, Bracey D, Ferdinando DP, Pearce JA.

Antimicrob Agents Chemother. 1998 Sep;42(9):2160-70.

14.

Chemical-genetic approaches for exploring the mode of action of natural products.

Lopez A, Parsons AB, Nislow C, Giaever G, Boone C.

Prog Drug Res. 2008;66:237, 239-71. Review.

PMID:
18416308
15.

Comparison of the membrane interaction and permeabilization by the designed peptide Ac-MB21-NH2 and truncated dermaseptin S3.

Moll GN, Brul S, Konings WN, Driessen AJ.

Biochemistry. 2000 Oct 3;39(39):11907-12.

PMID:
11009603
17.
18.
19.

Genomewide expression profiling of cryptolepine-induced toxicity in Saccharomyces cerevisiae.

Rojas M, Wright CW, Piña B, Portugal J.

Antimicrob Agents Chemother. 2008 Nov;52(11):3844-50. doi: 10.1128/AAC.00532-08. Epub 2008 Aug 18.

20.

Esculentin 1-21: a linear antimicrobial peptide from frog skin with inhibitory effect on bovine mastitis-causing bacteria.

Islas-Rodrìguez AE, Marcellini L, Orioni B, Barra D, Stella L, Mangoni ML.

J Pept Sci. 2009 Sep;15(9):607-14. doi: 10.1002/psc.1148.

PMID:
19507197

Supplemental Content

Support Center