Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation.

Merritt PM, Danhorn T, Fuqua C.

J Bacteriol. 2007 Nov;189(22):8005-14. Epub 2007 Aug 31.

2.

Novel pseudotaxis mechanisms improve migration of straight-swimming bacterial mutants through a porous environment.

Mohari B, Licata NA, Kysela DT, Merritt PM, Mukhopadhay S, Brun YV, Setayeshgar S, Fuqua C.

MBio. 2015 Feb 24;6(2):e00005. doi: 10.1128/mBio.00005-15.

3.

Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility.

Tomlinson AD, Ramey-Hartung B, Day TW, Merritt PM, Fuqua C.

Microbiology. 2010 Sep;156(Pt 9):2670-81. doi: 10.1099/mic.0.039032-0. Epub 2010 Jun 24.

4.

The Ctp type IVb pilus locus of Agrobacterium tumefaciens directs formation of the common pili and contributes to reversible surface attachment.

Wang Y, Haitjema CH, Fuqua C.

J Bacteriol. 2014 Aug 15;196(16):2979-88. doi: 10.1128/JB.01670-14. Epub 2014 Jun 9.

5.
6.

Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation.

Heindl JE, Hibbing ME, Xu J, Natarajan R, Buechlein AM, Fuqua C.

J Bacteriol. 2015 Dec 28;198(5):816-29. doi: 10.1128/JB.00668-15.

8.

Pseudomonas aeruginosa attachment and biofilm development in dynamic environments.

Ramsey MM, Whiteley M.

Mol Microbiol. 2004 Aug;53(4):1075-87.

9.

Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis.

Xu J, Kim J, Danhorn T, Merritt PM, Fuqua C.

Res Microbiol. 2012 Nov-Dec;163(9-10):674-84. doi: 10.1016/j.resmic.2012.10.013. Epub 2012 Oct 24.

10.

Spermidine Inversely Influences Surface Interactions and Planktonic Growth in Agrobacterium tumefaciens.

Wang Y, Kim SH, Natarajan R, Heindl JE, Bruger EL, Waters CM, Michael AJ, Fuqua C.

J Bacteriol. 2016 Sep 9;198(19):2682-91. doi: 10.1128/JB.00265-16. Print 2016 Oct 1.

11.
12.

Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens.

Tomlinson AD, Fuqua C.

Curr Opin Microbiol. 2009 Dec;12(6):708-14. doi: 10.1016/j.mib.2009.09.014. Epub 2009 Oct 29. Review.

16.

Identification of a new gene PA5017 involved in flagella-mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa.

Li Y, Xia H, Bai F, Xu H, Yang L, Yao H, Zhang L, Zhang X, Bai Y, Saris PE, Tolker-Nielsen T, Qiao M.

FEMS Microbiol Lett. 2007 Jul;272(2):188-95. Epub 2007 May 22.

17.

Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation.

Li Y, Hao G, Galvani CD, Meng Y, De La Fuente L, Hoch HC, Burr TJ.

Microbiology. 2007 Mar;153(Pt 3):719-26.

PMID:
17322192
18.

The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility.

Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L.

Microbiology. 2001 Sep;147(Pt 9):2517-28.

PMID:
11535791
19.

Flagellar motility is critical for Listeria monocytogenes biofilm formation.

Lemon KP, Higgins DE, Kolter R.

J Bacteriol. 2007 Jun;189(12):4418-24. Epub 2007 Apr 6.

20.

Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa.

Toutain CM, Caizza NC, Zegans ME, O'Toole GA.

Res Microbiol. 2007 Jun;158(5):471-7. Epub 2007 Apr 21.

PMID:
17533122

Supplemental Content

Support Center