Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Electric field-mediated transport of plasmid DNA in tumor interstitium in vivo.

Henshaw JW, Zaharoff DA, Mossop BJ, Yuan F.

Bioelectrochemistry. 2007 Nov;71(2):233-42.

2.

Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery.

Zaharoff DA, Barr RC, Li CY, Yuan F.

Gene Ther. 2002 Oct;9(19):1286-90.

3.

Enhancement of electric field-mediated gene delivery through pretreatment of tumors with a hyperosmotic mannitol solution.

Henshaw J, Mossop B, Yuan F.

Cancer Gene Ther. 2011 Jan;18(1):26-33. doi: 10.1038/cgt.2010.51.

4.

Electric fields in tumors exposed to external voltage sources: implication for electric field-mediated drug and gene delivery.

Mossop BJ, Barr RC, Henshaw JW, Zaharoff DA, Yuan F.

Ann Biomed Eng. 2006 Oct;34(10):1564-72.

PMID:
16917743
5.
6.

Effects of pulse strength and pulse duration on in vitro DNA electromobility.

Zaharoff DA, Yuan F.

Bioelectrochemistry. 2004 Apr;62(1):37-45.

PMID:
14990324
7.

Relaxin treatment of solid tumors: effects on electric field-mediated gene delivery.

Henshaw J, Mossop B, Yuan F.

Mol Cancer Ther. 2008 Aug;7(8):2566-73. doi: 10.1158/1535-7163.MCT-08-0435.

8.
9.

Sequence and time dependence of transfection efficiency of electrically-assisted gene delivery to tumors in mice.

Cemazar M, Pavlin D, Kranjc S, Grosel A, Mesojednik S, Sersa G.

Curr Drug Deliv. 2006 Jan;3(1):77-81.

PMID:
16472096
10.

Electrogenetherapy of B16.F10 murine melanoma tumors with an interleukin-28 expressing DNA plasmid.

Shah K, Connolly RJ, Chapman T, Jaroszeski MJ, Ugen KE.

Hum Vaccin Immunother. 2012 Nov 1;8(11):1722-8. doi: 10.4161/hv.22560.

11.

Electroporation-enhanced gene delivery in mammary tumors.

Wells JM, Li LH, Sen A, Jahreis GP, Hui SW.

Gene Ther. 2000 Apr;7(7):541-7.

12.

Mechanistic analysis of electroporation-induced cellular uptake of macromolecules.

Zaharoff DA, Henshaw JW, Mossop B, Yuan F.

Exp Biol Med (Maywood). 2008 Jan;233(1):94-105.

13.

Plasmid injection and application of electric pulses alter endogenous mRNA and protein expression in B16.F10 mouse melanomas.

Heller LC, Cruz YL, Ferraro B, Yang H, Heller R.

Cancer Gene Ther. 2010 Dec;17(12):864-71. doi: 10.1038/cgt.2010.43.

14.

A single molecule detection method for understanding mechanisms of electric field-mediated interstitial transport of genes.

Henshaw JW, Zaharoff DA, Mossop BJ, Yuan F.

Bioelectrochemistry. 2006 Oct;69(2):248-53.

PMID:
16713747
15.

Changing electrode orientation, but not pulse polarity, increases the efficacy of gene electrotransfer to tumors in vivo.

Todorovic V, Kamensek U, Sersa G, Cemazar M.

Bioelectrochemistry. 2014 Dec;100:119-27. doi: 10.1016/j.bioelechem.2013.12.002.

PMID:
24411306
16.

Regression of subcutaneous B16 melanoma tumors after intratumoral delivery of an IL-15-expressing plasmid followed by in vivo electroporation.

Ugen KE, Kutzler MA, Marrero B, Westover J, Coppola D, Weiner DB, Heller R.

Cancer Gene Ther. 2006 Oct;13(10):969-74.

18.

Changing the direction and orientation of electric field during electric pulses application improves plasmid gene transfer in vitro.

Pavlin M, Haberl SA, Rebersek M, Miklavcic D, Kanduser M.

J Vis Exp. 2011 Sep 12;(55). pii: 3309. doi: 10.3791/3309.

19.

Effective gene transfer to solid tumors using different nonviral gene delivery techniques: electroporation, liposomes, and integrin-targeted vector.

Cemazar M, Sersa G, Wilson J, Tozer GM, Hart SL, Grosel A, Dachs GU.

Cancer Gene Ther. 2002 Apr;9(4):399-406.

20.

The use of an in vitro 3D melanoma model to predict in vivo plasmid transfection using electroporation.

Marrero B, Heller R.

Biomaterials. 2012 Apr;33(10):3036-46. doi: 10.1016/j.biomaterials.2011.12.049.

Supplemental Content

Support Center