Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 70

1.

Mapping the human proteome using antibodies.

Uhlen M.

Mol Cell Proteomics. 2007 Aug;6(8):1455-6. No abstract available.

2.

Generation and validation of affinity reagents on a proteome-wide level.

Uhlén M, Hober S.

J Mol Recognit. 2009 Mar-Apr;22(2):57-64. doi: 10.1002/jmr.891. Review.

PMID:
18546091
3.

Rat tau proteome consists of six tau isoforms: implication for animal models of human tauopathies.

Hanes J, Zilka N, Bartkova M, Caletkova M, Dobrota D, Novak M.

J Neurochem. 2009 Mar;108(5):1167-76. doi: 10.1111/j.1471-4159.2009.05869.x. Epub 2009 Jan 7.

4.

Antibody microarrays as an experimental platform for the analysis of signal transduction networks.

Korf U, Henjes F, Schmidt C, Tresch A, Mannsperger H, Löbke C, Beissbarth T, Poustka A.

Adv Biochem Eng Biotechnol. 2008;110:153-75. doi: 10.1007/10_2008_101. Review.

PMID:
18528667
5.

A genecentric Human Protein Atlas for expression profiles based on antibodies.

Berglund L, Björling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA, Persson A, Ottosson J, Wernérus H, Nilsson P, Lundberg E, Sivertsson A, Navani S, Wester K, Kampf C, Hober S, Pontén F, Uhlén M.

Mol Cell Proteomics. 2008 Oct;7(10):2019-27. doi: 10.1074/mcp.R800013-MCP200. Review.

6.

Cancer immunomics: from serological proteome analysis to multiple affinity protein profiling.

Hardouin J, Lasserre JP, Sylvius L, Joubert-Caron R, Caron M.

Ann N Y Acad Sci. 2007 Jun;1107:223-30.

PMID:
17804550
7.

Picture story. Chipping away at the proteome's mysteries.

Hollien J.

Nat Struct Biol. 2001 Sep;8(9):743. No abstract available.

PMID:
11524671
8.

Toward a confocal subcellular atlas of the human proteome.

Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M, Andersson-Svahn H.

Mol Cell Proteomics. 2008 Mar;7(3):499-508. Epub 2007 Nov 19.

9.

Serological immunoreactivity against colon cancer proteome varies upon disease progression.

De Monte L, Sanvito F, Olivieri S, Viganò F, Doglioni C, Frasson M, Braga M, Bachi A, Dellabona P, Protti MP, Alessio M.

J Proteome Res. 2008 Feb;7(2):504-14. doi: 10.1021/pr070360m. Epub 2008 Jan 8.

PMID:
18179166
10.

Impact of urbanization on the proteome of birch pollen and its chemotactic activity on human granulocytes.

Bryce M, Drews O, Schenk MF, Menzel A, Estrella N, Weichenmeier I, Smulders MJ, Buters J, Ring J, Görg A, Behrendt H, Traidl-Hoffmann C.

Int Arch Allergy Immunol. 2010;151(1):46-55. doi: 10.1159/000232570. Epub 2009 Aug 6.

PMID:
19672096
11.

Proteome expression moves in vitro: resources and tools for harnessing the human proteome.

Hartley JL, Salehi-Ashtiani K, Hill DE.

Nat Methods. 2008 Dec;5(12):1001-2. doi: 10.1038/nmeth1208-1001. No abstract available.

PMID:
19034266
12.

Profiling the proteome dynamics during the cell cycle of human hepatoma cells.

Hsieh SY, Zhuang FH, Wu YT, Chen JK, Lee YL.

Proteomics. 2008 Jul;8(14):2872-84. doi: 10.1002/pmic.200800196.

PMID:
18655025
13.

Proteomic analysis of the cortisol-mediated stress response in THP-1 monocytes using DIGE technology.

Billing AM, Fack F, Renaut J, Olinger CM, Schote AB, Turner JD, Muller CP.

J Mass Spectrom. 2007 Nov;42(11):1433-44.

PMID:
17960574
14.

SYSTEMS BIOLOGY. Protein isoforms: more than meets the eye.

Larochelle S.

Nat Methods. 2016 Apr;13(4):291. No abstract available.

PMID:
27482571
15.

Three clinical-stage tumor targeting antibodies reveal differential expression of oncofetal fibronectin and tenascin-C isoforms in human lymphoma.

Schliemann C, Wiedmer A, Pedretti M, Szczepanowski M, Klapper W, Neri D.

Leuk Res. 2009 Dec;33(12):1718-22. doi: 10.1016/j.leukres.2009.06.025. Epub 2009 Jul 22.

PMID:
19625084
16.

The human embryo proteome.

Dominguez F, Pellicer A, Simón C.

Reprod Sci. 2009 Feb;16(2):188-90. doi: 10.1177/1933719108328612. Epub 2008 Dec 15. Review.

PMID:
19087971
17.

Human protein factory for converting the transcriptome into an in vitro-expressed proteome,.

Goshima N, Kawamura Y, Fukumoto A, Miura A, Honma R, Satoh R, Wakamatsu A, Yamamoto J, Kimura K, Nishikawa T, Andoh T, Iida Y, Ishikawa K, Ito E, Kagawa N, Kaminaga C, Kanehori K, Kawakami B, Kenmochi K, Kimura R, Kobayashi M, Kuroita T, Kuwayama H, Maruyama Y, Matsuo K, Minami K, Mitsubori M, Mori M, Morishita R, Murase A, Nishikawa A, Nishikawa S, Okamoto T, Sakagami N, Sakamoto Y, Sasaki Y, Seki T, Sono S, Sugiyama A, Sumiya T, Takayama T, Takayama Y, Takeda H, Togashi T, Yahata K, Yamada H, Yanagisawa Y, Endo Y, Imamoto F, Kisu Y, Tanaka S, Isogai T, Imai J, Watanabe S, Nomura N.

Nat Methods. 2008 Dec;5(12):1011-7.

PMID:
19054851
18.

Correlating low-similarity peptide sequences and allergenic epitopes.

Kanduc D.

Curr Pharm Des. 2008;14(3):289-95. Review.

PMID:
18220839
19.

The human red blood cell proteome and interactome.

Goodman SR, Kurdia A, Ammann L, Kakhniashvili D, Daescu O.

Exp Biol Med (Maywood). 2007 Dec;232(11):1391-408. Review.

PMID:
18040063
20.

Hexapeptide combinatorial ligand libraries: the march for the detection of the low-abundance proteome continues.

Boschetti E, Giorgio Righetti P.

Biotechniques. 2008 Apr;44(5):663-5. doi: 10.2144/000112762. Review.

Supplemental Content

Support Center