Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 49

1.

Bioinformatics processing of protein and transcript profiles of normal and transformed cell lines indicates functional impairment of transcriptional regulators in buccal carcinoma.

Staab CA, Ceder R, Jägerbrink T, Nilsson JA, Roberg K, Jörnvall H, Höög JO, Grafström RC.

J Proteome Res. 2007 Sep;6(9):3705-17. Epub 2007 Aug 15.

PMID:
17696463
2.

Expression of retinoid-related genes in serum-free cultures of normal, immortalized and malignant human oral keratinocytes.

Dressler D, Sarang Z, Szondy Z, Engelhart K, Grafström RC.

Int J Oncol. 2002 May;20(5):897-903.

PMID:
11956581
3.

Hyaluronan-mediated motility: a target in oral squamous cell carcinoma.

Yamano Y, Uzawa K, Shinozuka K, Fushimi K, Ishigami T, Nomura H, Ogawara K, Shiiba M, Yokoe H, Tanzawa H.

Int J Oncol. 2008 May;32(5):1001-9.

PMID:
18425326
4.

Gene Ontology-driven transcriptional analysis of CD34+ cell-initiated megakaryocytic cultures identifies new transcriptional regulators of megakaryopoiesis.

Fuhrken PG, Chen C, Apostolidis PA, Wang M, Miller WM, Papoutsakis ET.

Physiol Genomics. 2008 Apr 22;33(2):159-69. doi: 10.1152/physiolgenomics.00127.2007. Epub 2008 Feb 5.

5.

Novel breast cancer biomarkers identified by integrative proteomic and gene expression mapping.

Ou K, Yu K, Kesuma D, Hooi M, Huang N, Chen W, Lee SY, Goh XP, Tan LK, Liu J, Soon SY, Bin Abdul Rashid S, Putti TC, Jikuya H, Ichikawa T, Nishimura O, Salto-Tellez M, Tan P.

J Proteome Res. 2008 Apr;7(4):1518-28. doi: 10.1021/pr700820g. Epub 2008 Mar 5.

PMID:
18318472
6.

Analysis of the expression protein profiles of lung squamous carcinoma cell using shot-gun proteomics strategy.

Nan Y, Yang S, Tian Y, Zhang W, Zhou B, Bu L, Huo S.

Med Oncol. 2009;26(2):215-21. doi: 10.1007/s12032-008-9109-4. Epub 2008 Nov 6.

PMID:
18988000
7.
8.

iTRAQ-multidimensional liquid chromatography and tandem mass spectrometry-based identification of potential biomarkers of oral epithelial dysplasia and novel networks between inflammation and premalignancy.

Ralhan R, Desouza LV, Matta A, Tripathi SC, Ghanny S, Dattagupta S, Thakar A, Chauhan SS, Siu KW.

J Proteome Res. 2009 Jan;8(1):300-9. doi: 10.1021/pr800501j.

PMID:
19072117
9.

Serum proteomic approach for the identification of serum biomarkers contributed by oral squamous cell carcinoma and host tissue microenvironment.

Bijian K, Mlynarek AM, Balys RL, Jie S, Xu Y, Hier MP, Black MJ, Di Falco MR, LaBoissiere S, Alaoui-Jamali MA.

J Proteome Res. 2009 May;8(5):2173-85. doi: 10.1021/pr800979e.

PMID:
19284786
10.

Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data.

Vu TT, Vohradsky J.

Genomics. 2009 May;93(5):426-33. doi: 10.1016/j.ygeno.2009.01.006. Epub 2009 Feb 5.

11.

Proteomic approach to the identification of novel delta-lactoferrin target genes: Characterization of DcpS, an mRNA scavenger decapping enzyme.

Mariller C, Hardivillé S, Hoedt E, Benaïssa M, Mazurier J, Pierce A.

Biochimie. 2009 Jan;91(1):109-22. doi: 10.1016/j.biochi.2008.07.009. Epub 2008 Aug 7.

PMID:
18725266
12.

Decreased expression of Annexin A1 correlates with pathologic differentiation grade in oral squamous cell carcinoma.

Zhang L, Yang X, Zhong LP, Zhou XJ, Pan HY, Wei KJ, Li J, Chen WT, Zhang ZY.

J Oral Pathol Med. 2009 Apr;38(4):362-70. doi: 10.1111/j.1600-0714.2008.00678.x. Epub 2008 Jul 31.

PMID:
18673418
13.

Serum-responsive expression of carbonyl-metabolizing enzymes in normal and transformed human buccal keratinocytes.

Staab CA, Ceder R, Roberg K, Grafström RC, Höög JO.

Cell Mol Life Sci. 2008 Nov;65(22):3653-63. doi: 10.1007/s00018-008-8554-8.

PMID:
18854940
14.

Predicting gene ontology functions from protein's regional surface structures.

Liu ZP, Wu LY, Wang Y, Chen L, Zhang XS.

BMC Bioinformatics. 2007 Dec 11;8:475.

15.

Proteomics analysis of nasopharyngeal carcinoma cell secretome using a hollow fiber culture system and mass spectrometry.

Wu HY, Chang YH, Chang YC, Liao PC.

J Proteome Res. 2009 Jan;8(1):380-9. doi: 10.1021/pr8006733.

PMID:
19012429
16.

Analysis of mass spectrometry data in proteomics.

Matthiesen R, Jensen ON.

Methods Mol Biol. 2008;453:105-22. doi: 10.1007/978-1-60327-429-6_4.

PMID:
18712299
17.

Downregulation of carcinoembryonic antigen-related cell adhesion molecule 1 in oral squamous cell carcinoma: correlation with tumor progression and poor prognosis.

Shinozuka K, Uzawa K, Fushimi K, Yamano Y, Shiiba M, Bukawa H, Yokoe H, Tanzawa H.

Oncology. 2009;76(6):387-97. doi: 10.1159/000215580. Epub 2009 Apr 30.

PMID:
19407471
18.

Different expression of MAGE-A-antigens in foetal and adult keratinocyte cell lines.

Müller-Richter UD, Dowejko A, Zhou W, Reichert TE, Driemel O.

Oral Oncol. 2008 Jul;44(7):628-33. Epub 2007 Nov 13.

PMID:
17993289
19.

Potential involvement of MYC- and p53-related pathways in tumorigenesis in human oral squamous cell carcinoma revealed by proteomic analysis.

Koehn J, Krapfenbauer K, Huber S, Stein E, Sutter W, Watzinger F, Erovic BM, Thurnher D, Schindler T, Fountoulakis M, Turhani D.

J Proteome Res. 2008 Sep;7(9):3818-29. doi: 10.1021/pr800077a. Epub 2008 Aug 14.

PMID:
18700792
20.

Computational modelling of genome-wide [corrected] transcription assembly networks using a fluidics analogy.

Azmy YY, Gupta A, Pugh BF.

PLoS One. 2008 Aug 28;3(8):e3095. doi: 10.1371/journal.pone.0003095. Erratum in: PLoS ONE. 2008;3(9). doi: 10.1371/annotation/aadfff4b-6947-475c-8121-225ba113adf8.

Supplemental Content

Support Center