Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 196

1.

Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength.

Warburton RE, McCarthy A, Wallace AM, Hernandez-Marin S, Hadfield RH, Nam SW, Buller GS.

Opt Lett. 2007 Aug 1;32(15):2266-8.

PMID:
17671605
2.

Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system.

Chen S, Liu D, Zhang W, You L, He Y, Zhang W, Yang X, Wu G, Ren M, Zeng H, Wang Z, Xie X, Jiang M.

Appl Opt. 2013 May 10;52(14):3241-5. doi: 10.1364/AO.52.003241.

PMID:
23669836
3.

Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector.

Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H.

Opt Express. 2011 Jul 4;19(14):13497-502. doi: 10.1364/OE.19.013497.

PMID:
21747504
4.

Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector.

McCarthy A, Ren X, Della Frera A, Gemmell NR, Krichel NJ, Scarcella C, Ruggeri A, Tosi A, Buller GS.

Opt Express. 2013 Sep 23;21(19):22098-113. doi: 10.1364/OE.21.022098.

PMID:
24104102
5.

Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting.

Massa J, Buller G, Walker A, Smith G, Cova S, Umasuthan M, Wallace A.

Appl Opt. 2002 Feb 20;41(6):1063-70.

PMID:
11900125
6.

Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting.

McCarthy A, Collins RJ, Krichel NJ, Fernández V, Wallace AM, Buller GS.

Appl Opt. 2009 Nov 10;48(32):6241-51. doi: 10.1364/AO.48.006241.

PMID:
19904323
7.

Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector.

Zhou H, He Y, You L, Chen S, Zhang W, Wu J, Wang Z, Xie X.

Opt Express. 2015 Jun 1;23(11):14603-11. doi: 10.1364/OE.23.014603.

PMID:
26072820
8.

Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm.

Mohan N, Minaeva O, Goltsman GN, Saleh MF, Nasr MB, Sergienko AV, Saleh BE, Teich MC.

Appl Opt. 2009 Jul 10;48(20):4009-17.

PMID:
19593355
9.

Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection.

McCarthy A, Krichel NJ, Gemmell NR, Ren X, Tanner MG, Dorenbos SN, Zwiller V, Hadfield RH, Buller GS.

Opt Express. 2013 Apr 8;21(7):8904-15. doi: 10.1364/OE.21.008904.

PMID:
23571981
10.

Time-of-Flight Optical Ranging System Based on Time-Correlated Single-Photon Counting.

Massa JS, Buller GS, Walker AC, Cova S, Umasuthan M, Wallace AM.

Appl Opt. 1998 Nov 1;37(31):7298-304.

PMID:
18301562
11.

Resolving range ambiguity in a photon counting depth imager operating at kilometer distances.

Krichel NJ, McCarthy A, Buller GS.

Opt Express. 2010 Apr 26;18(9):9192-206. doi: 10.1364/OE.18.009192.

PMID:
20588766
12.

781 Mbit/s photon-counting optical communications using a superconducting nanowire detector.

Robinson BS, Kerman AJ, Dauler EA, Barron RJ, Caplan DO, Stevens ML, Carney JJ, Hamilton SA, Yang JK, Berggren KK.

Opt Lett. 2006 Feb 15;31(4):444-6.

PMID:
16496881
13.

Depth profiling for the identification of unknown substances and concealed content at remote distances using time-resolved stand-off Raman spectroscopy.

Zachhuber B, Gasser C, Ramer G, Chrysostom Et, Lendl B.

Appl Spectrosc. 2012 Aug;66(8):875-81. doi: 10.1366/12-06602. Epub 2012 Jul 13.

PMID:
22800681
14.

Bayesian analysis of Lidar signals with multiple returns.

Hernández-Marín S, Wallace AM, Gibson GJ.

IEEE Trans Pattern Anal Mach Intell. 2007 Dec;29(12):2170-80.

PMID:
17934226
15.

Pseudo-random single photon counting for time-resolved optical measurement.

Zhang Q, Soon HW, Tian H, Fernando S, Ha Y, Chen NG.

Opt Express. 2008 Aug 18;16(17):13233-9.

PMID:
18711561
16.

Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector.

Shcheslavskiy V, Morozov P, Divochiy A, Vakhtomin Y, Smirnov K, Becker W.

Rev Sci Instrum. 2016 May;87(5):053117. doi: 10.1063/1.4948920.

PMID:
27250402
17.

Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science.

Chen L, Schwarzer D, Verma VB, Stevens MJ, Marsili F, Mirin RP, Nam SW, Wodtke AM.

Acc Chem Res. 2017 Jun 20;50(6):1400-1409. doi: 10.1021/acs.accounts.7b00071. Epub 2017 Jun 2.

PMID:
28573866
18.

Real-time data acquisition incorporating high-speed software correlator for single-molecule spectroscopy.

Yang LL, Lee HY, Wang MK, Lin XY, Hsu KH, Chang YR, Fann W, White JD.

J Microsc. 2009 Jun;234(3):302-10. doi: 10.1111/j.1365-2818.2009.03172.x.

19.

Single photon source characterization with a superconducting single photon detector.

Hadfield RH, Stevens MJ, Gruber SS, Miller AJ, Schwall RE, Mirin RP, Nam SW.

Opt Express. 2005 Dec 26;13(26):10846-53.

PMID:
19503303
20.

Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range.

Toussaint J, Grüner R, Schubert M, May T, Meyer HG, Dietzek B, Popp J, Hofherr M, Arndt M, Henrich D, Il'in K, Siegel M.

Rev Sci Instrum. 2012 Dec;83(12):123103. doi: 10.1063/1.4769048.

PMID:
23277968

Supplemental Content

Support Center