Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99


Integration of inositol phosphate signaling pathways via human ITPK1.

Chamberlain PP, Qian X, Stiles AR, Cho J, Jones DH, Lesley SA, Grabau EA, Shears SB, Spraggon G.

J Biol Chem. 2007 Sep 21;282(38):28117-25. Epub 2007 Jul 6.


Human ITPK1: a reversible inositol phosphate kinase/phosphatase that links receptor-dependent phospholipase C to Ca2+-activated chloride channels.

Saiardi A, Cockcroft S.

Sci Signal. 2008 Jan 29;1(4):pe5. doi: 10.1126/stke.14pe5. Review. Erratum in: Sci Signal. 2008;1(7):er1.


Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1.

Shears SB.

Adv Enzyme Regul. 2009;49(1):87-96. doi: 10.1016/j.advenzreg.2008.12.008. Epub 2009 Jan 3. Review. No abstract available.


Activation of PLC by an endogenous cytokine (GBP) in Drosophila S3 cells and its application as a model for studying inositol phosphate signalling through ITPK1.

Zhou Y, Wu S, Wang H, Hayakawa Y, Bird GS, Shears SB.

Biochem J. 2012 Dec 1;448(2):273-83. doi: 10.1042/BJ20120730.


A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control.

Odom AR, Stahlberg A, Wente SR, York JD.

Science. 2000 Mar 17;287(5460):2026-9.


A Solanum tuberosum inositol phosphate kinase (StITPK1) displaying inositol phosphate-inositol phosphate and inositol phosphate-ADP phosphotransferase activities.

Caddick SE, Harrison CJ, Stavridou I, Mitchell JL, Hemmings AM, Brearley CA.

FEBS Lett. 2008 May 28;582(12):1731-7. doi: 10.1016/j.febslet.2008.04.034. Epub 2008 Apr 28.


Regulation of inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) by reversible lysine acetylation.

Zhang C, Majerus PW, Wilson MP.

Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2290-5. doi: 10.1073/pnas.1119740109. Epub 2012 Jan 30.


How do inositol phosphates regulate calcium signaling?

Putney JW Jr, Takemura H, Hughes AR, Horstman DA, Thastrup O.

FASEB J. 1989 Jun;3(8):1899-905. Review.


Apical localization of ITPK1 enhances its ability to be a modifier gene product in a murine tracheal cell model of cystic fibrosis.

Yang L, Reece J, Gabriel SE, Shears SB.

J Cell Sci. 2006 Apr 1;119(Pt 7):1320-8. Epub 2006 Mar 14.


How versatile are inositol phosphate kinases?

Shears SB.

Biochem J. 2004 Jan 15;377(Pt 2):265-80. Review.


The maternal ITPK1 gene polymorphism is associated with neural tube defects in a high-risk Chinese population.

Guan Z, Wang J, Guo J, Wang F, Wang X, Li G, Xie Q, Han X, Niu B, Zhang T.

PLoS One. 2014 Jan 20;9(1):e86145. doi: 10.1371/journal.pone.0086145. eCollection 2014.


Structure of a human inositol 1,4,5-trisphosphate 3-kinase: substrate binding reveals why it is not a phosphoinositide 3-kinase.

González B, Schell MJ, Letcher AJ, Veprintsev DB, Irvine RF, Williams RL.

Mol Cell. 2004 Sep 10;15(5):689-701.


Inositol phosphate-induced stabilization of inositol 1,3,4,5,6-pentakisphosphate 2-kinase and its role in substrate specificity.

Gosein V, Leung TF, Krajden O, Miller GJ.

Protein Sci. 2012 May;21(5):737-42. doi: 10.1002/pro.2049. Epub 2012 Mar 29.


Crystal structure of inositol phosphate multikinase 2 and implications for substrate specificity.

Holmes W, Jogl G.

J Biol Chem. 2006 Dec 8;281(49):38109-16. Epub 2006 Oct 18.


Metabolism of inositol 1,4,5-trisphosphate to higher inositol phosphates in bovine adrenal cytosol.

Guillemette G, Balla T, Baukal AJ, Catt KJ.

Am J Hypertens. 1989 May;2(5 Pt 1):387-94.


Distinct specificity in the binding of inositol phosphates by pleckstrin homology domains of pleckstrin, RAC-protein kinase, diacylglycerol kinase and a new 130 kDa protein.

Takeuchi H, Kanematsu T, Misumi Y, Sakane F, Konishi H, Kikkawa U, Watanabe Y, Katan M, Hirata M.

Biochim Biophys Acta. 1997 Dec 12;1359(3):275-85.

Supplemental Content

Support Center