Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system.

Belov K, Sanderson CE, Deakin JE, Wong ES, Assange D, McColl KA, Gout A, de Bono B, Barrow AD, Speed TP, Trowsdale J, Papenfuss AT.

Genome Res. 2007 Jul;17(7):982-91. Epub 2007 May 10.

3.

In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals.

Wong ES, Young LJ, Papenfuss AT, Belov K.

Immunome Res. 2006 Nov 10;2:4. doi: 10.1186/1745-7580-2-4.

4.

A VpreB3 homologue in a marsupial, the gray short-tailed opossum, Monodelphis domestica.

Wang X, Parra ZE, Miller RD.

Immunogenetics. 2012 Aug;64(8):647-52. doi: 10.1007/s00251-012-0626-0. Epub 2012 Jun 9.

5.

Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex.

Belov K, Deakin JE, Papenfuss AT, Baker ML, Melman SD, Siddle HV, Gouin N, Goode DL, Sargeant TJ, Robinson MD, Wakefield MJ, Mahony S, Cross JG, Benos PV, Samollow PB, Speed TP, Graves JA, Miller RD.

PLoS Biol. 2006 Mar;4(3):e46. Epub 2006 Jan 31.

6.

The marsupial CD8 gene locus: molecular cloning and expression analysis of the alpha and beta sequences in the gray short-tailed opossum (Monodelphis domestica) and the tammar wallaby (Macropus eugenii).

Duncan LG, Nair SV, Deane EM.

Vet Immunol Immunopathol. 2009 May 15;129(1-2):14-27. doi: 10.1016/j.vetimm.2008.12.003. Epub 2008 Dec 6.

PMID:
19135263
7.

Convergent and divergent evolution of genomic imprinting in the marsupial Monodelphis domestica.

Das R, Anderson N, Koran MI, Weidman JR, Mikkelsen TS, Kamal M, Murphy SK, Linblad-Toh K, Greally JM, Jirtle RL.

BMC Genomics. 2012 Aug 16;13:394. doi: 10.1186/1471-2164-13-394.

9.

Transcriptomic Changes Associated with Pregnancy in a Marsupial, the Gray Short-Tailed Opossum Monodelphis domestica.

Hansen VL, Schilkey FD, Miller RD.

PLoS One. 2016 Sep 6;11(9):e0161608. doi: 10.1371/journal.pone.0161608. eCollection 2016.

10.

Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene.

Douglas KC, Wang X, Jasti M, Wolff A, VandeBerg JL, Clark AG, Samollow PB.

BMC Genomics. 2014 Jan 31;15:89. doi: 10.1186/1471-2164-15-89.

11.

Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica.

Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD, Jurka J.

Genome Res. 2007 Jul;17(7):992-1004. Epub 2007 May 10.

12.

The opossum genome: insights and opportunities from an alternative mammal.

Samollow PB.

Genome Res. 2008 Aug;18(8):1199-215. doi: 10.1101/gr.065326.107. Review.

13.
14.

Paternal X inactivation does not correlate with X chromosome evolutionary strata in marsupials.

Rodríguez-Delgado CL, Waters SA, Waters PD.

BMC Evol Biol. 2014 Dec 24;14:267. doi: 10.1186/s12862-014-0267-z.

15.

Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphis domestica.

Parra ZE, Baker ML, Hathaway J, Lopez AM, Trujillo J, Sharp A, Miller RD.

BMC Genomics. 2008 Feb 29;9:111. doi: 10.1186/1471-2164-9-111.

16.

Early postnatal B cell ontogeny and antibody repertoire maturation in the opossum, Monodelphis domestica.

Wang X, Sharp AR, Miller RD.

PLoS One. 2012;7(9):e45931. doi: 10.1371/journal.pone.0045931. Epub 2012 Sep 24.

17.

On the genomics of immunoglobulins in the gray, short-tailed opossum Monodelphis domestica.

Wang X, Olp JJ, Miller RD.

Immunogenetics. 2009 Aug;61(8):581-96. doi: 10.1007/s00251-009-0385-8. Epub 2009 Jul 17.

18.
19.

Genomic identification of chemokines and cytokines in opossum.

Wong ES, Papenfuss AT, Belov K.

J Interferon Cytokine Res. 2011 Mar;31(3):317-30. doi: 10.1089/jir.2010.0045. Epub 2011 Jan 8.

PMID:
21214366
20.

Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences.

Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, Garber M, Gentles AJ, Goodstadt L, Heger A, Jurka J, Kamal M, Mauceli E, Searle SM, Sharpe T, Baker ML, Batzer MA, Benos PV, Belov K, Clamp M, Cook A, Cuff J, Das R, Davidow L, Deakin JE, Fazzari MJ, Glass JL, Grabherr M, Greally JM, Gu W, Hore TA, Huttley GA, Kleber M, Jirtle RL, Koina E, Lee JT, Mahony S, Marra MA, Miller RD, Nicholls RD, Oda M, Papenfuss AT, Parra ZE, Pollock DD, Ray DA, Schein JE, Speed TP, Thompson K, VandeBerg JL, Wade CM, Walker JA, Waters PD, Webber C, Weidman JR, Xie X, Zody MC; Broad Institute Genome Sequencing Platform; Broad Institute Whole Genome Assembly Team, Graves JA, Ponting CP, Breen M, Samollow PB, Lander ES, Lindblad-Toh K.

Nature. 2007 May 10;447(7141):167-77.

PMID:
17495919

Supplemental Content

Support Center