Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 134

1.

Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity.

Hohl M, Dunand-Sauthier I, Staresincic L, Jaquier-Gubler P, Thorel F, Modesti M, Clarkson SG, Schärer OD.

Nucleic Acids Res. 2007;35(9):3053-63. Epub 2007 Apr 22.

2.

The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity.

Dunand-Sauthier I, Hohl M, Thorel F, Jaquier-Gubler P, Clarkson SG, Schärer OD.

J Biol Chem. 2005 Feb 25;280(8):7030-7. Epub 2004 Dec 7.

3.

Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH.

Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JH, van Driel R, Vermeulen W, Houtsmuller AB.

Mol Cell Biol. 2006 Dec;26(23):8868-79. Epub 2006 Sep 25.

5.

The UVS9 gene of Chlamydomonas encodes an XPG homolog with a new conserved domain.

Deitsch E, Hibbard EM, Petersen JL.

DNA Repair (Amst). 2016 Jan;37:33-42. doi: 10.1016/j.dnarep.2015.11.003. Epub 2015 Nov 19.

PMID:
26658142
6.

Severe growth retardation and short life span of double-mutant mice lacking Xpa and exon 15 of Xpg.

Shiomi N, Mori M, Kito S, Harada YN, Tanaka K, Shiomi T.

DNA Repair (Amst). 2005 Mar 2;4(3):351-7.

PMID:
15661658
7.

Substrate recognition and catalysis by flap endonucleases and related enzymes.

Tomlinson CG, Atack JM, Chapados B, Tainer JA, Grasby JA.

Biochem Soc Trans. 2010 Apr;38(2):433-7. doi: 10.1042/BST0380433. Review.

PMID:
20298197
8.

Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair.

Constantinou A, Gunz D, Evans E, Lalle P, Bates PA, Wood RD, Clarkson SG.

J Biol Chem. 1999 Feb 26;274(9):5637-48.

9.
10.

The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair.

Wakasugi M, Reardon JT, Sancar A.

J Biol Chem. 1997 Jun 20;272(25):16030-4.

11.

Structural determinants for substrate binding and catalysis by the structure-specific endonuclease XPG.

Hohl M, Thorel F, Clarkson SG, Schärer OD.

J Biol Chem. 2003 May 23;278(21):19500-8. Epub 2003 Mar 18.

12.

DmGEN shows a flap endonuclease activity, cleaving the blocked-flap structure and model replication fork.

Kanai Y, Ishikawa G, Takeuchi R, Ruike T, Nakamura R, Ihara A, Ohashi T, Takata K, Kimura S, Sakaguchi K.

FEBS J. 2007 Aug;274(15):3914-27.

14.

Characterization of a putative helix-loop-helix motif in nucleotide excision repair endonuclease, XPG.

Park MS, Valdez J, Gurley L, Kim CY.

J Biol Chem. 1997 Oct 31;272(44):27823-9.

15.

p300/CBP acetyl transferases interact with and acetylate the nucleotide excision repair factor XPG.

Tillhon M, Cazzalini O, Nardo T, Necchi D, Sommatis S, Stivala LA, Scovassi AI, Prosperi E.

DNA Repair (Amst). 2012 Oct 1;11(10):844-52. doi: 10.1016/j.dnarep.2012.08.001. Epub 2012 Sep 3.

PMID:
22954786
16.

Structure and specificity of FEN-1 from Methanopyrus kandleri.

Shah S, Dunten P, Stiteler A, Park CK, Horton NC.

Proteins. 2015 Jan;83(1):188-94. doi: 10.1002/prot.24704. Epub 2014 Nov 18.

17.

Unpairing and gating: sequence-independent substrate recognition by FEN superfamily nucleases.

Grasby JA, Finger LD, Tsutakawa SE, Atack JM, Tainer JA.

Trends Biochem Sci. 2012 Feb;37(2):74-84. doi: 10.1016/j.tibs.2011.10.003. Epub 2011 Nov 24. Review.

19.

An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA.

Roberts JA, Bell SD, White MF.

Mol Microbiol. 2003 Apr;48(2):361-71.

20.

Nucleotide excision repair endonuclease genes in Drosophila melanogaster.

Sekelsky JJ, Hollis KJ, Eimerl AI, Burtis KC, Hawley RS.

Mutat Res. 2000 Apr 28;459(3):219-28.

PMID:
10812334

Supplemental Content

Support Center