Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Transmission of Cerenkoverenkov radiation in optical fibers.

Law SH, Suchowerska N, McKenzie DR, Fleming SC, Lin T.

Opt Lett. 2007 May 15;32(10):1205-7.

PMID:
17440535
2.

Optical fiber design and the trapping of Cerenkov radiation.

Law SH, Fleming SC, Suchowerska N, McKenzie DR.

Appl Opt. 2006 Dec 20;45(36):9151-9.

PMID:
17151754
3.

Cerenkov light spectrum in an optical fiber exposed to a photon or electron radiation therapy beam.

Lambert J, Yin Y, McKenzie DR, Law S, Suchowerska N.

Appl Opt. 2009 Jun 20;48(18):3362-7.

PMID:
19543342
4.

Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise.

Beddar AS, Suchowerska N, Law SH.

Phys Med Biol. 2004 Mar 7;49(5):783-90.

PMID:
15070202
5.

Observation of coherent cerenkov radiation from a solid dielectric with short bunches of electrons

Takahashi T, Shibata Y, Ishi K, Ikezawa M, Oyamada M, Kondo Y.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Dec;62(6 Pt B):8606-11.

PMID:
11138160
6.
7.

Spectroscopic separation of ńĆerenkov radiation in high-resolution radiation fiber dosimeters.

Darafsheh A, Zhang R, Kanick SC, Pogue BW, Finlay JC.

J Biomed Opt. 2015 Sep;20(9):095001. doi: 10.1117/1.JBO.20.9.095001.

PMID:
26334972
8.

Highly nonlinear silica suspended core fibers.

Dong L, Thomas BK, Fu L.

Opt Express. 2008 Oct 13;16(21):16423-30.

PMID:
18852748
9.

Cerenkov-free scintillation dosimetry in external beam radiotherapy with an air core light guide.

Lambert J, Yin Y, McKenzie DR, Law S, Suchowerska N.

Phys Med Biol. 2008 Jun 7;53(11):3071-80. doi: 10.1088/0031-9155/53/11/021. Epub 2008 May 19.

PMID:
18490811
10.

Dependence of bending losses on cladding thickness in plastic optical fibers.

Durana G, Zubia J, Arrue J, Aldabaldetreku G, Mateo J.

Appl Opt. 2003 Feb 20;42(6):997-1002.

PMID:
12617215
11.

Designing optical-fiber modulators by using magnetic fluids.

Horng HE, Chieh JJ, Chao YH, Yang SY, Hong CY, Yang HC.

Opt Lett. 2005 Mar 1;30(5):543-5.

PMID:
15789730
12.

Pulse broadening in graded-index optical fibers.

Olshansky R, Keck DB.

Appl Opt. 1976 Feb 1;15(2):483-91. doi: 10.1364/AO.15.000483.

PMID:
20164997
13.

Fast-neutron radiation effects in a silica-core optical fiber studied by a CCD-camera spectrometer.

Griscom DL, Gingerich ME, Friebele EJ, Putnam M, Unruh W.

Appl Opt. 1994 Feb 20;33(6):1022-8. doi: 10.1364/AO.33.001022.

PMID:
20862110
14.

Temperature sensing in optical fibers using cladding and jacket loss effects.

Gottlieb M, Brandt GB.

Appl Opt. 1981 Nov 15;20(22):3867-73. doi: 10.1364/AO.20.003867.

PMID:
20372284
15.

Probing optical microfiber nonuniformities at nanoscale.

Sumetsky M, Dulashko Y, Fini JM, Hale A, Nicholson JW.

Opt Lett. 2006 Aug 15;31(16):2393-5.

PMID:
16880833
16.

Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing.

Warren-Smith SC, Afshar S, Monro TM.

Opt Express. 2008 Jun 9;16(12):9034-45.

PMID:
18545614
17.

Silicon optical fiber.

Ballato J, Hawkins T, Foy P, Stolen R, Kokuoz B, Ellison M, McMillen C, Reppert J, Rao AM, Daw M, Sharma SR, Shori R, Stafsudd O, Rice RR, Powers DR.

Opt Express. 2008 Nov 10;16(23):18675-83.

PMID:
19581953
18.

Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect.

Barkou SE, Broeng J, Bjarklev A.

Opt Lett. 1999 Jan 1;24(1):46-8.

PMID:
18071403
19.

Accurate determination of the thermal variation of the aperture of step-index optical fibers.

Dugas J, Sotom M, Douhe E, Martin L, Destruel P.

Appl Opt. 1988 Dec 1;27(23):4822-5. doi: 10.1364/AO.27.004822.

PMID:
20539661
20.

Extremely large mode area optical fibers formed by thermal stress.

Fu L, McKay HA, Dong L.

Opt Express. 2009 Jul 6;17(14):11782-93.

PMID:
19582093

Supplemental Content

Support Center