Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 312

1.

Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation.

Lee J, Fortner JD, Hughes JB, Kim JH.

Environ Sci Technol. 2007 Apr 1;41(7):2529-35.

PMID:
17438811
2.
3.

Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species.

Lee J, Yamakoshi Y, Hughes JB, Kim JH.

Environ Sci Technol. 2008 May 1;42(9):3459-64.

PMID:
18522134
4.

Transformation of aggregated C60 in the aqueous phase by UV irradiation.

Lee J, Cho M, Fortner JD, Hughes JB, Kim JH.

Environ Sci Technol. 2009 Jul 1;43(13):4878-83.

PMID:
19673279
5.

Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.

Hotze EM, Labille J, Alvarez P, Wiesner MR.

Environ Sci Technol. 2008 Jun 1;42(11):4175-80.

PMID:
18589984
6.

Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation.

Chae SR, Watanabe Y, Wiesner MR.

Water Res. 2011 Jan;45(1):308-14. doi: 10.1016/j.watres.2010.07.067. Epub 2010 Aug 3.

PMID:
20708771
7.

Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.

Brunet L, Lyon DY, Hotze EM, Alvarez PJ, Wiesner MR.

Environ Sci Technol. 2009 Jun 15;43(12):4355-60.

PMID:
19603646
8.

Fullerol-sensitized production of reactive oxygen species in aqueous solution.

Pickering KD, Wiesner MR.

Environ Sci Technol. 2005 Mar 1;39(5):1359-65.

PMID:
15787378
9.

Translocation of C(60) from aqueous stable colloidal aggregates into surfactant micelles.

Zhang B, Cho M, Hughes JB, Kim JH.

Environ Sci Technol. 2009 Dec 15;43(24):9124-9. doi: 10.1021/es9026369.

PMID:
19928758
10.

Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60).

Markovic Z, Trajkovic V.

Biomaterials. 2008 Sep;29(26):3561-73. doi: 10.1016/j.biomaterials.2008.05.005. Epub 2008 Jun 4. Review.

PMID:
18534675
11.

Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems.

Lee I, Mackeyev Y, Cho M, Li D, Kim JH, Wilson LJ, Alvarez PJ.

Environ Sci Technol. 2009 Sep 1;43(17):6604-10.

PMID:
19764224
12.

Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase.

Li Y, Niu J, Shang E, Crittenden JC.

Environ Sci Technol. 2015 Jan 20;49(2):965-73.

PMID:
25536151
13.
14.

Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2.

Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T.

J Am Chem Soc. 2003 Oct 22;125(42):12803-9.

PMID:
14558828
15.
16.

Kinetics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight.

Li Q, Xie B, Hwang YS, Xu Y.

Environ Sci Technol. 2009 May 15;43(10):3574-9.

PMID:
19544857
17.

Escherichia coli inactivation by water-soluble, ozonated C60 derivative: kinetics and mechanisms.

Cho M, Fortner JD, Hughes JB, Kim JH.

Environ Sci Technol. 2009 Oct 1;43(19):7410-5.

PMID:
19848154
18.

Reaction of water-stable C60 aggregates with ozone.

Fortner JD, Kim DI, Boyd AM, Falkner JC, Moran S, Colvin VL, Hughes JB, Kim JH.

Environ Sci Technol. 2007 Nov 1;41(21):7497-502.

PMID:
18044532
19.

Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures.

Brant J, Lecoanet H, Hotze M, Wiesner M.

Environ Sci Technol. 2005 Sep 1;39(17):6343-51.

PMID:
16190186
20.

A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C60 in water.

Li H, Jia X, Li Y, Shi X, Hao J.

J Phys Chem B. 2006 Jan 12;110(1):68-74.

PMID:
16471501

Supplemental Content

Support Center