Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy.

Chistoserdova L, Lapidus A, Han C, Goodwin L, Saunders L, Brettin T, Tapia R, Gilna P, Lucas S, Richardson PM, Lidstrom ME.

J Bacteriol. 2007 Jun;189(11):4020-7. Epub 2007 Apr 6.

2.

Expressed genome of Methylobacillus flagellatus as defined through comprehensive proteomics and new insights into methylotrophy.

Hendrickson EL, Beck DA, Wang T, Lidstrom ME, Hackett M, Chistoserdova L.

J Bacteriol. 2010 Oct;192(19):4859-67. doi: 10.1128/JB.00512-10. Epub 2010 Jul 16.

3.

Purification and characterization of azurin from the methylamine-utilizing obligate methylotroph Methylobacillus flagellatus KT.

Dinarieva TY, Trashin SA, Kahnt J, Karyakin AA, Netrusov AI.

Can J Microbiol. 2012 Apr;58(4):516-22. doi: 10.1139/w2012-020. Epub 2012 Mar 28.

PMID:
22455796
4.

Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph.

Chistoserdova L, Gomelsky L, Vorholt JA, Gomelsky M, Tsygankov YD, Lidstrom ME.

Microbiology. 2000 Jan;146 ( Pt 1):233-8.

PMID:
10658669
6.

Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath).

Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA.

PLoS Biol. 2004 Oct;2(10):e303. Epub 2004 Sep 21.

7.

Genetic and phenotypic comparison of facultative methylotrophy between Methylobacterium extorquens strains PA1 and AM1.

Nayak DD, Marx CJ.

PLoS One. 2014 Sep 18;9(9):e107887. doi: 10.1371/journal.pone.0107887. eCollection 2014.

8.

Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view.

Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME.

J Bacteriol. 2003 May;185(10):2980-7. Review. No abstract available.

9.

Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the methylophilaceae.

Lapidus A, Clum A, Labutti K, Kaluzhnaya MG, Lim S, Beck DA, Glavina Del Rio T, Nolan M, Mavromatis K, Huntemann M, Lucas S, Lidstrom ME, Ivanova N, Chistoserdova L.

J Bacteriol. 2011 Aug;193(15):3757-64. doi: 10.1128/JB.00404-11. Epub 2011 May 27.

10.

Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact.

Antony CP, Kumaresan D, Ferrando L, Boden R, Moussard H, Scavino AF, Shouche YS, Murrell JC.

ISME J. 2010 Nov;4(11):1470-80. doi: 10.1038/ismej.2010.70. Epub 2010 Jun 17.

PMID:
20555363
11.

Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources.

Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, Vorholt JA, Olson MV, Kaul R, Weissenbach J, Médigue C, Lidstrom ME.

PLoS One. 2009;4(5):e5584. doi: 10.1371/journal.pone.0005584. Epub 2009 May 18.

12.

Methylobacterium extorquens: methylotrophy and biotechnological applications.

Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA.

Appl Microbiol Biotechnol. 2015 Jan;99(2):517-34. doi: 10.1007/s00253-014-6240-3. Epub 2014 Nov 30. Review.

PMID:
25432674
13.

Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy.

Chistoserdova L, Crowther GJ, Vorholt JA, Skovran E, Portais JC, Lidstrom ME.

J Bacteriol. 2007 Dec;189(24):9076-81. Epub 2007 Oct 5.

14.

Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.

Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T.

Appl Environ Microbiol. 2012 Aug;78(15):5170-81. doi: 10.1128/AEM.00703-12. Epub 2012 May 18.

15.

Methylobacillus arboreus sp. nov., and Methylobacillus gramineus sp. nov., novel non-pigmented obligately methylotrophic bacteria associated with plants.

Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA.

Syst Appl Microbiol. 2011 Nov;34(7):477-81. doi: 10.1016/j.syapm.2011.03.005. Epub 2011 Jun 2.

PMID:
21640537
16.

Bifunctional sucrose phosphate synthase/phosphatase is involved in the sucrose biosynthesis by Methylobacillus flagellatus KT.

But SY, Khmelenina VN, Reshetnikov AS, Trotsenko YA.

FEMS Microbiol Lett. 2013 Oct;347(1):43-51. doi: 10.1111/1574-6968.12219. Epub 2013 Aug 12.

17.

Methylohalomonas lacus gen. nov., sp. nov. and Methylonatrum kenyense gen. nov., sp. nov., methylotrophic gammaproteobacteria from hypersaline lakes.

Sorokin DY, Trotsenko YA, Doronina NV, Tourova TP, Galinski EA, Kolganova TV, Muyzer G.

Int J Syst Evol Microbiol. 2007 Dec;57(Pt 12):2762-9.

PMID:
18048722
18.
19.

Supplemental Content

Support Center