Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks.

Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM.

Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5860-5. Epub 2007 Mar 26.

2.

Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.

Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM.

Mol Cell Proteomics. 2005 Sep;4(9):1240-50. Epub 2005 Jun 11.

3.

An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells.

Heibeck TH, Ding SJ, Opresko LK, Zhao R, Schepmoes AA, Yang F, Tolmachev AV, Monroe ME, Camp DG 2nd, Smith RD, Wiley HS, Qian WJ.

J Proteome Res. 2009 Aug;8(8):3852-61. doi: 10.1021/pr900044c.

4.

Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data.

Waters KM, Liu T, Quesenberry RD, Willse AR, Bandyopadhyay S, Kathmann LE, Weber TJ, Smith RD, Wiley HS, Thrall BD.

PLoS One. 2012;7(3):e34515. doi: 10.1371/journal.pone.0034515. Epub 2012 Mar 29.

5.

Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.

Parker BL, Yang G, Humphrey SJ, Chaudhuri R, Ma X, Peterman S, James DE.

Sci Signal. 2015 Jun 9;8(380):rs6. doi: 10.1126/scisignal.aaa3139.

PMID:
26060331
6.

Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data.

Imamura H, Yachie N, Saito R, Ishihama Y, Tomita M.

BMC Bioinformatics. 2010 May 7;11:232. doi: 10.1186/1471-2105-11-232.

7.

A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation.

Nguyen V, Cao L, Lin JT, Hung N, Ritz A, Yu K, Jianu R, Ulin SP, Raphael BJ, Laidlaw DH, Brossay L, Salomon AR.

Mol Cell Proteomics. 2009 Nov;8(11):2418-31. doi: 10.1074/mcp.M800307-MCP200. Epub 2009 Jul 14.

8.

In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling.

Boersema PJ, Foong LY, Ding VM, Lemeer S, van Breukelen B, Philp R, Boekhorst J, Snel B, den Hertog J, Choo AB, Heck AJ.

Mol Cell Proteomics. 2010 Jan;9(1):84-99. doi: 10.1074/mcp.M900291-MCP200. Epub 2009 Sep 21.

9.

Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions.

Naegle KM, White FM, Lauffenburger DA, Yaffe MB.

Mol Biosyst. 2012 Oct;8(10):2771-82. doi: 10.1039/c2mb25200g.

10.

Improved proteome coverage by using high efficiency cysteinyl peptide enrichment: the human mammary epithelial cell proteome.

Liu T, Qian WJ, Chen WN, Jacobs JM, Moore RJ, Anderson DJ, Gritsenko MA, Monroe ME, Thrall BD, Camp DG 2nd, Smith RD.

Proteomics. 2005 Apr;5(5):1263-73.

11.

Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks.

Zhang Y, Wolf-Yadlin A, White FM.

Methods Mol Biol. 2007;359:203-12.

PMID:
17484120
12.

Partially isobaric peptide termini labeling assisted proteome quantitation based on MS and MS/MS signals.

Zhang S, Wu Q, Shan Y, Zhou Y, Zhang L, Zhang Y.

J Proteomics. 2015 Jan 30;114:152-60. doi: 10.1016/j.jprot.2014.11.014. Epub 2014 Nov 28.

PMID:
25434490
13.

MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications.

Curran TG, Zhang Y, Ma DJ, Sarkaria JN, White FM.

Nat Commun. 2015 Jan 12;6:5924. doi: 10.1038/ncomms6924.

14.

Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics.

Blagoev B, Ong SE, Kratchmarova I, Mann M.

Nat Biotechnol. 2004 Sep;22(9):1139-45. Epub 2004 Aug 15.

PMID:
15314609
15.

Large-scale proteomics analysis of the human kinome.

Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Kéri G, Mann M, Daub H.

Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15.

17.

[Advances in analysis techniques of phosphoproteome].

Yang J, Zou QM, Cai SX, Guo G, Zhu YH.

Sheng Wu Gong Cheng Xue Bao. 2003 Mar;19(2):244-8. Review. Chinese.

PMID:
15966331
18.

Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type.

VanMeter AJ, Rodriguez AS, Bowman ED, Jen J, Harris CC, Deng J, Calvert VS, Silvestri A, Fredolini C, Chandhoke V, Petricoin EF 3rd, Liotta LA, Espina V.

Mol Cell Proteomics. 2008 Oct;7(10):1902-24. doi: 10.1074/mcp.M800204-MCP200. Epub 2008 Aug 6.

19.

Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling.

Engholm-Keller K, Hansen TA, Palmisano G, Larsen MR.

J Proteome Res. 2011 Dec 2;10(12):5383-97. doi: 10.1021/pr200641x. Epub 2011 Oct 26.

PMID:
21955146
20.

Proteomics study of medullary thyroid carcinomas expressing RET germ-line mutations: identification of new signaling elements.

Gorla L, Mondellini P, Cuccuru G, Miccichè F, Cassinelli G, Cremona M, Pierotti MA, Lanzi C, Bongarzone I.

Mol Carcinog. 2009 Mar;48(3):220-31. doi: 10.1002/mc.20474.

PMID:
18756447

Supplemental Content

Support Center