Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

2.

Multimodal fast optical interrogation of neural circuitry.

Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K.

Nature. 2007 Apr 5;446(7136):633-9.

PMID:
17410168
3.

High-performance genetically targetable optical neural silencing by light-driven proton pumps.

Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES.

Nature. 2010 Jan 7;463(7277):98-102. doi: 10.1038/nature08652.

4.

Millisecond-timescale, genetically targeted optical control of neural activity.

Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K.

Nat Neurosci. 2005 Sep;8(9):1263-8. Epub 2005 Aug 14.

PMID:
16116447
5.

Informational lesions: optical perturbation of spike timing and neural synchrony via microbial opsin gene fusions.

Han X, Qian X, Stern P, Chuong AS, Boyden ES.

Front Mol Neurosci. 2009 Aug 27;2:12. doi: 10.3389/neuro.02.012.2009. eCollection 2009.

6.

Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.

Pulver SR, Pashkovski SL, Hornstein NJ, Garrity PA, Griffith LC.

J Neurophysiol. 2009 Jun;101(6):3075-88. doi: 10.1152/jn.00071.2009. Epub 2009 Apr 1.

7.

Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons.

Bernstein JG, Han X, Henninger MA, Ko EY, Qian X, Franzesi GT, McConnell JP, Stern P, Desimone R, Boyden ES.

Proc SPIE Int Soc Opt Eng. 2008;6854:68540H.

8.

Ultrafast optogenetic control.

Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P.

Nat Neurosci. 2010 Mar;13(3):387-92. doi: 10.1038/nn.2495. Epub 2010 Jan 17.

PMID:
20081849
9.

Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri.

Zhang F, Prigge M, Beyrière F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K.

Nat Neurosci. 2008 Jun;11(6):631-3. doi: 10.1038/nn.2120. Epub 2008 Apr 23.

10.

Improved expression of halorhodopsin for light-induced silencing of neuronal activity.

Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K, Augustine GJ, Feng G.

Brain Cell Biol. 2008 Aug;36(1-4):141-54. doi: 10.1007/s11068-008-9034-7. Epub 2008 Oct 17.

11.

Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans.

Husson SJ, Liewald JF, Schultheis C, Stirman JN, Lu H, Gottschalk A.

PLoS One. 2012;7(7):e40937. doi: 10.1371/journal.pone.0040937. Epub 2012 Jul 16.

12.

Optimizing the spatial resolution of Channelrhodopsin-2 activation.

Schoenenberger P, Grunditz A, Rose T, Oertner TG.

Brain Cell Biol. 2008 Aug;36(1-4):119-27. doi: 10.1007/s11068-008-9025-8. Epub 2008 Jul 25.

PMID:
18654856
13.

Photostimulation of channelrhodopsin-2 expressing ventrolateral medullary neurons increases sympathetic nerve activity and blood pressure in rats.

Abbott SB, Stornetta RL, Socolovsky CS, West GH, Guyenet PG.

J Physiol. 2009 Dec 1;587(Pt 23):5613-31. doi: 10.1113/jphysiol.2009.177535. Epub 2009 Oct 12.

14.

Multi-site optical excitation using ChR2 and micro-LED array.

Grossman N, Poher V, Grubb MS, Kennedy GT, Nikolic K, McGovern B, Berlinguer Palmini R, Gong Z, Drakakis EM, Neil MA, Dawson MD, Burrone J, Degenaar P.

J Neural Eng. 2010 Feb;7(1):16004. doi: 10.1088/1741-2560/7/1/016004. Epub 2010 Jan 14.

PMID:
20075504
15.

In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity.

Rector DM, Yao X, Harper RM, George JS.

In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5.

16.

Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2.

Campagnola L, Wang H, Zylka MJ.

J Neurosci Methods. 2008 Mar 30;169(1):27-33. doi: 10.1016/j.jneumeth.2007.11.012. Epub 2007 Nov 26.

PMID:
18187202
17.

Two-photon single-cell optogenetic control of neuronal activity by sculpted light.

Andrasfalvy BK, Zemelman BV, Tang J, Vaziri A.

Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11981-6. doi: 10.1073/pnas.1006620107. Epub 2010 Jun 11.

18.

Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.

Hayashi Y, Tagawa Y, Yawata S, Nakanishi S, Funabiki K.

Eur J Neurosci. 2012 Sep;36(6):2722-32. doi: 10.1111/j.1460-9568.2012.08191.x. Epub 2012 Jul 11.

PMID:
22780218
19.

Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.

Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsáki G, Magee JC.

Eur J Neurosci. 2010 Jun;31(12):2279-91. doi: 10.1111/j.1460-9568.2010.07250.x. Epub 2010 Jun 7.

20.

An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.

Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K.

J Neural Eng. 2007 Sep;4(3):S143-56. Epub 2007 May 31.

PMID:
17873414

Supplemental Content

Support Center