Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Normalization method for metabolomics data using optimal selection of multiple internal standards.

Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M.

BMC Bioinformatics. 2007 Mar 15;8:93.

2.

Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data.

Redestig H, Fukushima A, Stenlund H, Moritz T, Arita M, Saito K, Kusano M.

Anal Chem. 2009 Oct 1;81(19):7974-80. doi: 10.1021/ac901143w.

PMID:
19743813
3.

Optimized LOWESS normalization parameter selection for DNA microarray data.

Berger JA, Hautaniemi S, Järvinen AK, Edgren H, Mitra SK, Astola J.

BMC Bioinformatics. 2004 Dec 9;5:194.

4.

A probe-treatment-reference (PTR) model for the analysis of oligonucleotide expression microarrays.

Ge H, Cheng C, Li LM.

BMC Bioinformatics. 2008 Apr 14;9:194. doi: 10.1186/1471-2105-9-194.

5.

Extracting active pathways from gene expression data.

Vert JP, Kanehisa M.

Bioinformatics. 2003 Oct;19 Suppl 2:ii238-44.

PMID:
14534196
6.

ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments.

Nueda MJ, Ferrer A, Conesa A.

Biostatistics. 2012 Jul;13(3):553-66. doi: 10.1093/biostatistics/kxr042. Epub 2011 Nov 14.

PMID:
22085896
7.

Comparison of Affymetrix data normalization methods using 6,926 experiments across five array generations.

Autio R, Kilpinen S, Saarela M, Kallioniemi O, Hautaniemi S, Astola J.

BMC Bioinformatics. 2009 Jan 30;10 Suppl 1:S24. doi: 10.1186/1471-2105-10-S1-S24.

8.

Validation of alternative methods of data normalization in gene co-expression studies.

Reverter A, Barris W, McWilliam S, Byrne KA, Wang YH, Tan SH, Hudson N, Dalrymple BP.

Bioinformatics. 2005 Apr 1;21(7):1112-20. Epub 2004 Nov 25.

PMID:
15564293
9.

A new outlier removal approach for cDNA microarray normalization.

Wu Y, Yan L, Liu H, Sun H, Xie H.

Biotechniques. 2009 Aug;47(2):691-2, 694-700. doi: 10.2144/000113195.

10.

Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements.

Lange E, Tautenhahn R, Neumann S, Gröpl C.

BMC Bioinformatics. 2008 Sep 15;9:375. doi: 10.1186/1471-2105-9-375.

11.

Significance analysis of microarray transcript levels in time series experiments.

Di Camillo B, Toffolo G, Nair SK, Greenlund LJ, Cobelli C.

BMC Bioinformatics. 2007 Mar 8;8 Suppl 1:S10.

12.

Systematic comparison of RNA-Seq normalization methods using measurement error models.

Sun Z, Zhu Y.

Bioinformatics. 2012 Oct 15;28(20):2584-91. doi: 10.1093/bioinformatics/bts497. Epub 2012 Aug 22.

PMID:
22914217
13.

Normalizing and integrating metabolomics data.

De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, Roessner U, McConville M, Speed TP.

Anal Chem. 2012 Dec 18;84(24):10768-76. doi: 10.1021/ac302748b. Epub 2012 Nov 29.

PMID:
23150939
14.

Isotopologue ratio normalization for non-targeted metabolomics.

Weindl D, Wegner A, Jäger C, Hiller K.

J Chromatogr A. 2015 Apr 10;1389:112-9. doi: 10.1016/j.chroma.2015.02.025. Epub 2015 Feb 17.

15.

Systematic variation normalization in microarray data to get gene expression comparison unbiased.

Chou JW, Paules RS, Bushel PR.

J Bioinform Comput Biol. 2005 Apr;3(2):225-41.

PMID:
15852502
16.

A meta-data based method for DNA microarray imputation.

Jörnsten R, Ouyang M, Wang HY.

BMC Bioinformatics. 2007 Mar 29;8:109.

17.

ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data.

Smilde AK, Jansen JJ, Hoefsloot HC, Lamers RJ, van der Greef J, Timmerman ME.

Bioinformatics. 2005 Jul 1;21(13):3043-8. Epub 2005 May 12. Erratum in: Bioinformatics. 2007 Dec 15;23(24):3415.

PMID:
15890747
18.

Quantile normalization approach for liquid chromatography-mass spectrometry-based metabolomic data from healthy human volunteers.

Lee J, Park J, Lim MS, Seong SJ, Seo JJ, Park SM, Lee HW, Yoon YR.

Anal Sci. 2012;28(8):801-5.

19.

Improving the prediction accuracy in classification using the combined data sets by ranks of gene expressions.

Kim KY, Ki DH, Jeung HC, Chung HC, Rha SY.

BMC Bioinformatics. 2008 Jun 16;9:283. doi: 10.1186/1471-2105-9-283.

20.

Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results.

Castle AL, Fiehn O, Kaddurah-Daouk R, Lindon JC.

Brief Bioinform. 2006 Jun;7(2):159-65. Epub 2006 Apr 24.

PMID:
16772263

Supplemental Content

Support Center