Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 211

1.

Deciphering the disease process of schizophrenia: the contribution of cortical GABA neurons.

Lewis DA, Hashimoto T.

Int Rev Neurobiol. 2007;78:109-31. Review.

PMID:
17349859
2.

Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations.

Lewis DA, Moghaddam B.

Arch Neurol. 2006 Oct;63(10):1372-6. Review.

PMID:
17030651
3.

Cortical inhibitory neurons and schizophrenia.

Lewis DA, Hashimoto T, Volk DW.

Nat Rev Neurosci. 2005 Apr;6(4):312-24. Review.

PMID:
15803162
4.

Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia.

Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU.

Biol Psychiatry. 1999 Sep 1;46(5):616-26. Review.

PMID:
10472415
5.

Functional and anatomical aspects of prefrontal pathology in schizophrenia.

Goldman-Rakic PS, Selemon LD.

Schizophr Bull. 1997;23(3):437-58. Review.

PMID:
9327508
6.

Impaired prefrontal inhibition in schizophrenia: relevance for cognitive dysfunction.

Volk DW, Lewis DA.

Physiol Behav. 2002 Dec;77(4-5):501-5. Review.

PMID:
12526990
7.

Dopaminergic control of working memory and its relevance to schizophrenia: a circuit dynamics perspective.

Tanaka S.

Neuroscience. 2006 Apr 28;139(1):153-71. Epub 2005 Dec 1. Review.

PMID:
16324800
8.

[Schizophrenia and cortical GABA neurotransmission].

Hashimoto T, Matsubara T, Lewis DA.

Seishin Shinkeigaku Zasshi. 2010;112(5):439-52. Review. Japanese.

PMID:
20560363
9.

Postnatal development of prefrontal inhibitory circuits and the pathophysiology of cognitive dysfunction in schizophrenia.

Lewis DA, Cruz D, Eggan S, Erickson S.

Ann N Y Acad Sci. 2004 Jun;1021:64-76. Review.

PMID:
15251876
10.

Pathophysiologically based treatment interventions in schizophrenia.

Lewis DA, Gonzalez-Burgos G.

Nat Med. 2006 Sep;12(9):1016-22. Review.

PMID:
16960576
11.
12.
13.

Chandelier cartridges in the prefrontal cortex are reduced in isolation reared rats.

Bloomfield C, French SJ, Jones DN, Reavill C, Southam E, Cilia J, Totterdell S.

Synapse. 2008 Aug;62(8):628-31. doi: 10.1002/syn.20521.

PMID:
18512213
14.

Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia.

Lewis DA, Gonzalez-Burgos G.

Brain Res Bull. 2000 Jul 15;52(5):309-17. Review.

PMID:
10922508
15.

Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia.

Lewis DA, Hashimoto T, Morris HM.

Neurotox Res. 2008 Oct;14(2-3):237-48. doi: 10.1007/BF03033813. Review.

16.
17.

GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia.

Gonzalez-Burgos G, Lewis DA.

Schizophr Bull. 2008 Sep;34(5):944-61. doi: 10.1093/schbul/sbn070. Epub 2008 Jun 26. Review.

18.

Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia.

Volk DW, Pierri JN, Fritschy JM, Auh S, Sampson AR, Lewis DA.

Cereb Cortex. 2002 Oct;12(10):1063-70.

PMID:
12217970
19.

Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction.

Lewis DA, Volk DW, Hashimoto T.

Psychopharmacology (Berl). 2004 Jun;174(1):143-50. Epub 2003 Dec 9. Review.

PMID:
15205885
20.

GABAergic cortical neuron chromatin as a putative target to treat schizophrenia vulnerability.

Costa E, Grayson DR, Mitchell CP, Tremolizzo L, Veldic M, Guidotti A.

Crit Rev Neurobiol. 2003;15(2):121-42. Review.

PMID:
14977367

Supplemental Content

Support Center