Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry.

Molina H, Horn DM, Tang N, Mathivanan S, Pandey A.

Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2199-204. Epub 2007 Feb 7.

2.

Comprehensive comparison of collision induced dissociation and electron transfer dissociation.

Molina H, Matthiesen R, Kandasamy K, Pandey A.

Anal Chem. 2008 Jul 1;80(13):4825-35. doi: 10.1021/ac8007785. Epub 2008 Jun 10.

4.

High-energy electron transfer dissociation (HE-ETD) using alkali metal targets for sequence analysis of post-translational peptides.

Hayakawa S, Matsumoto S, Hashimoto M, Iwamoto K, Nagao H, Toyoda M, Shigeri Y, Tajiri M, Wada Y.

J Am Soc Mass Spectrom. 2010 Sep;21(9):1482-9. doi: 10.1016/j.jasms.2010.05.010. Epub 2010 Jun 9.

5.

Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation.

Collins MO, Wright JC, Jones M, Rayner JC, Choudhary JS.

J Proteomics. 2014 May 30;103:1-14. doi: 10.1016/j.jprot.2014.03.010. Epub 2014 Mar 21.

6.

Systematic evaluation of alternating CID and ETD fragmentation for phosphorylated peptides.

Kim MS, Zhong J, Kandasamy K, Delanghe B, Pandey A.

Proteomics. 2011 Jun;11(12):2568-72. doi: 10.1002/pmic.201000547. Epub 2011 May 20.

7.

Gas-Phase Rearrangement in Lysine Phosphorylated Peptides During Electron-Transfer Dissociation Tandem Mass Spectrometry.

Bertran-Vicente J, Schümann M, Hackenberger CP, Krause E.

Anal Chem. 2015 Jul 21;87(14):6990-4. doi: 10.1021/acs.analchem.5b01389. Epub 2015 Jun 29.

PMID:
26110354
8.

Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome.

Domon B, Bodenmiller B, Carapito C, Hao Z, Huehmer A, Aebersold R.

J Proteome Res. 2009 Jun;8(6):2633-9. doi: 10.1021/pr800834e.

PMID:
19435317
9.

Revealing the dynamics of the 20 S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach.

Lu H, Zong C, Wang Y, Young GW, Deng N, Souda P, Li X, Whitelegge J, Drews O, Yang PY, Ping P.

Mol Cell Proteomics. 2008 Nov;7(11):2073-89. doi: 10.1074/mcp.M800064-MCP200. Epub 2008 Jun 25.

10.

Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos.

Frese CK, Altelaar AF, Hennrich ML, Nolting D, Zeller M, Griep-Raming J, Heck AJ, Mohammed S.

J Proteome Res. 2011 May 6;10(5):2377-88. doi: 10.1021/pr1011729. Epub 2011 Apr 1.

PMID:
21413819
11.

Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra.

Sun RX, Dong MQ, Song CQ, Chi H, Yang B, Xiu LY, Tao L, Jing ZY, Liu C, Wang LH, Fu Y, He SM.

J Proteome Res. 2010 Dec 3;9(12):6354-67. doi: 10.1021/pr100648r. Epub 2010 Nov 12.

PMID:
20883037
12.

Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry.

Swaney DL, Wenger CD, Thomson JA, Coon JJ.

Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):995-1000. doi: 10.1073/pnas.0811964106. Epub 2009 Jan 14.

13.

Large-scale identification of endogenous secretory peptides using electron transfer dissociation mass spectrometry.

Sasaki K, Osaki T, Minamino N.

Mol Cell Proteomics. 2013 Mar;12(3):700-9. doi: 10.1074/mcp.M112.017400. Epub 2012 Dec 18.

14.

Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides.

Yang F, Wu S, Stenoien DL, Zhao R, Monroe ME, Gritsenko MA, Purvine SO, Polpitiya AD, Tolić N, Zhang Q, Norbeck AD, Orton DJ, Moore RJ, Tang K, Anderson GA, Pasa-Tolić L, Camp DG 2nd, Smith RD.

Anal Chem. 2009 May 15;81(10):4137-43. doi: 10.1021/ac802605m.

15.
16.

Immobilized metal affinity chromatography/reversed-phase enrichment of phosphopeptides and analysis by CID/ETD tandem mass spectrometry.

Navajas R, Paradela A, Albar JP.

Methods Mol Biol. 2011;681:337-48. doi: 10.1007/978-1-60761-913-0_18.

PMID:
20978974
17.

Pinpointing phosphorylation sites: Quantitative filtering and a novel site-specific x-ion fragment.

Kelstrup CD, Hekmat O, Francavilla C, Olsen JV.

J Proteome Res. 2011 Jul 1;10(7):2937-48. doi: 10.1021/pr200154t. Epub 2011 Apr 28.

PMID:
21526838
18.

Comparison of CID, ETD and metastable atom-activated dissociation (MAD) of doubly and triply charged phosphorylated tau peptides.

Cook SL, Zimmermann CM, Singer D, Fedorova M, Hoffmann R, Jackson GP.

J Mass Spectrom. 2012 Jun;47(6):786-94. doi: 10.1002/jms.3023.

PMID:
22707171
19.

Strategies in protein sequencing and characterization: multi-enzyme digestion coupled with alternate CID/ETD tandem mass spectrometry.

Nardiello D, Palermo C, Natale A, Quinto M, Centonze D.

Anal Chim Acta. 2015 Jan 7;854:106-17. doi: 10.1016/j.aca.2014.10.053. Epub 2014 Nov 4.

PMID:
25479873
20.

Effects of electron-transfer coupled with collision-induced dissociation (ET/CID) on doubly charged peptides and phosphopeptides.

Liu CW, Lai CC.

J Am Soc Mass Spectrom. 2011 Jan;22(1):57-66. doi: 10.1007/s13361-010-0020-9. Epub 2011 Jan 27.

PMID:
21472544

Supplemental Content

Support Center