Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 284

1.

In silico prediction of drug solubility: 2. Free energy of solvation in pure melts.

Lüder K, Lindfors L, Westergren J, Nordholm S, Kjellander R.

J Phys Chem B. 2007 Feb 22;111(7):1883-92. Epub 2007 Feb 1.

PMID:
17266352
2.

In silico prediction of drug solubility: 1. Free energy of hydration.

Westergren J, Lindfors L, Höglund T, Lüder K, Nordholm S, Kjellander R.

J Phys Chem B. 2007 Feb 22;111(7):1872-82. Epub 2007 Feb 1.

PMID:
17266351
3.

In silico prediction of drug solubility. 3. Free energy of solvation in pure amorphous matter.

Lüder K, Lindfors L, Westergren J, Nordholm S, Kjellander R.

J Phys Chem B. 2007 Jun 28;111(25):7303-11. Epub 2007 Jun 6.

PMID:
17550285
4.

In silico prediction of drug solubility: 4. Will simple potentials suffice?

Lüder K, Lindfors L, Westergren J, Nordholm S, Persson R, Pedersen M.

J Comput Chem. 2009 Sep;30(12):1859-71. doi: 10.1002/jcc.21173.

PMID:
19115279
5.

Rational design of ion force fields based on thermodynamic solvation properties.

Horinek D, Mamatkulov SI, Netz RR.

J Chem Phys. 2009 Mar 28;130(12):124507. doi: 10.1063/1.3081142.

PMID:
19334851
6.

Computation of hydration free energies of organic solutes with an implicit water model.

Basilevsky MV, Leontyev IV, Luschekina SV, Kondakova OA, Sulimov VB.

J Comput Chem. 2006 Apr 15;27(5):552-70.

PMID:
16463371
8.

Prediction of the aqueous solvation free energy of organic compounds by using autocorrelation of molecular electrostatic potential surface properties combined with response surface analysis.

Michielan L, Bacilieri M, Kaseda C, Moro S.

Bioorg Med Chem. 2008 May 15;16(10):5733-42. doi: 10.1016/j.bmc.2008.03.064. Epub 2008 Mar 30.

PMID:
18406153
9.

Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.

Yamazaki T, Kovalenko A.

J Phys Chem B. 2011 Jan 20;115(2):310-8. doi: 10.1021/jp1082938. Epub 2010 Dec 17.

PMID:
21166382
10.
11.

Rapid prediction of solvation free energy. 3. Application to the SAMPL2 challenge.

Purisima EO, Corbeil CR, Sulea T.

J Comput Aided Mol Des. 2010 Apr;24(4):373-83. doi: 10.1007/s10822-010-9341-9. Epub 2010 Apr 6.

PMID:
20414699
12.
13.
14.

A molecular thermodynamic view of DNA-drug interactions: a case study of 25 minor-groove binders.

Shaikh SA, Ahmed SR, Jayaram B.

Arch Biochem Biophys. 2004 Sep 1;429(1):81-99.

PMID:
15288812
15.
16.

Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.

Nguyen MT, Matus MH, Jackson VE, Vu TN, Rustad JR, Dixon DA.

J Phys Chem A. 2008 Oct 16;112(41):10386-98. doi: 10.1021/jp804715j. Epub 2008 Sep 25.

PMID:
18816037
17.

Continuum and discrete calculation of fractional contributions to solvation free energy.

Morreale A, Gelpí JL, Luque FJ, Orozco M.

J Comput Chem. 2003 Oct;24(13):1610-23.

PMID:
12926005
18.

Calculations of pH-dependent binding of proteins to biological membranes.

Mihajlovic M, Lazaridis T.

J Phys Chem B. 2006 Feb 23;110(7):3375-84.

PMID:
16494352
19.
20.

FACTS: Fast analytical continuum treatment of solvation.

Haberthür U, Caflisch A.

J Comput Chem. 2008 Apr 15;29(5):701-15.

PMID:
17918282

Supplemental Content

Support Center