Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 179


A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis.

Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ.

Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5. Epub 2007 Jan 22.


Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis.

Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ.

Plant J. 2011 Dec;68(6):954-65. doi: 10.1111/j.1365-313X.2011.04746.x. Epub 2011 Oct 17.


Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion.

Pumplin N, Zhang X, Noar RD, Harrison MJ.

Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):E665-72. doi: 10.1073/pnas.1110215109. Epub 2012 Feb 21.


Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.

Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ.

BMC Plant Biol. 2009 Jan 22;9:10. doi: 10.1186/1471-2229-9-10.


Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis.

Zhang Q, Blaylock LA, Harrison MJ.

Plant Cell. 2010 May;22(5):1483-97. doi: 10.1105/tpc.110.074955. Epub 2010 May 7.


Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants.

Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bücking H.

New Phytol. 2014 Jul;203(2):646-56. doi: 10.1111/nph.12827. Epub 2014 May 2.


The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.

Abdallah C, Valot B, Guillier C, Mounier A, Balliau T, Zivy M, van Tuinen D, Renaut J, Wipf D, Dumas-Gaudot E, Recorbet G.

J Proteomics. 2014 Aug 28;108:354-68. doi: 10.1016/j.jprot.2014.05.028. Epub 2014 Jun 10.


The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots.

Volpe V, Giovannetti M, Sun XG, Fiorilli V, Bonfante P.

Plant Cell Environ. 2016 Mar;39(3):660-71. doi: 10.1111/pce.12659. Epub 2016 Jan 12.


Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula.

Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN.

New Phytol. 2013 Jul;199(1):188-202. doi: 10.1111/nph.12234. Epub 2013 Mar 18.


Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula.

Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M.

J Exp Bot. 2015 Jul;66(13):4061-73. doi: 10.1093/jxb/erv202. Epub 2015 May 4.


Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.

Seddas PM, Arias CM, Arnould C, van Tuinen D, Godfroy O, Benhassou HA, Gouzy J, Morandi D, Dessaint F, Gianinazzi-Pearson V.

Mol Plant Microbe Interact. 2009 Mar;22(3):341-51. doi: 10.1094/MPMI-22-3-0341.


Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots.

Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ.

Plant J. 2007 May;50(3):529-44. Epub 2007 Apr 5.


Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula.

Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S.

BMC Plant Biol. 2011 May 5;11:75. doi: 10.1186/1471-2229-11-75.


Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis.

Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F.

Mol Plant Microbe Interact. 2010 Jul;23(7):915-26. doi: 10.1094/MPMI-23-7-0915.


Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis.

Pumplin N, Harrison MJ.

Plant Physiol. 2009 Oct;151(2):809-19. doi: 10.1104/pp.109.141879. Epub 2009 Aug 19.


Suppression of Arbuscule Degeneration in Medicago truncatula phosphate transporter4 Mutants is Dependent on the Ammonium Transporter 2 Family Protein AMT2;3.

Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y, Levesque-Tremblay V, Noar RD, Daniels DA, Bravo A, Eaglesham JB, Benedito VA, Udvardi MK, Harrison MJ.

Plant Cell. 2015 Apr;27(4):1352-66. doi: 10.1105/tpc.114.131144. Epub 2015 Apr 3.


Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula.

Baier MC, Keck M, Gödde V, Niehaus K, Küster H, Hohnjec N.

Plant Physiol. 2010 Feb;152(2):1000-14. doi: 10.1104/pp.109.149898. Epub 2009 Dec 9.


Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.

Hu Y, Wu S, Sun Y, Li T, Zhang X, Chen C, Lin G, Chen B.

Mycorrhiza. 2015 Feb;25(2):131-42. doi: 10.1007/s00572-014-0595-2. Epub 2014 Jul 19.


Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis.

Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ.

Plant J. 2010 Feb 1;61(3):482-94. doi: 10.1111/j.1365-313X.2009.04072.x. Epub 2009 Nov 14.

Supplemental Content

Support Center