Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.
2.
3.

Compliant leg behaviour explains basic dynamics of walking and running.

Geyer H, Seyfarth A, Blickhan R.

Proc Biol Sci. 2006 Nov 22;273(1603):2861-7.

4.

A collisional perspective on quadrupedal gait dynamics.

Lee DV, Bertram JE, Anttonen JT, Ros IG, Harris SL, Biewener AA.

J R Soc Interface. 2011 Oct 7;8(63):1480-6. doi: 10.1098/rsif.2011.0019. Epub 2011 Apr 6.

5.

Compass gait mechanics account for top walking speeds in ducks and humans.

Usherwood JR, Szymanek KL, Daley MA.

J Exp Biol. 2008 Dec;211(Pt 23):3744-9. doi: 10.1242/jeb.023416.

6.

Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.

Biewener AA.

J Exp Zool A Comp Exp Biol. 2006 Nov 1;305(11):899-911. Review.

PMID:
17029267
7.

Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion.

Reilly SM, McElroy EJ, Andrew Odum R, Hornyak VA.

Proc Biol Sci. 2006 Jun 22;273(1593):1563-8.

8.

Inefficient use of inverted pendulum mechanism during quadrupedal walking in the Japanese macaque.

Ogihara N, Makishima H, Hirasaki E, Nakatsukasa M.

Primates. 2012 Jan;53(1):41-8. doi: 10.1007/s10329-011-0265-3. Epub 2011 Aug 27.

PMID:
21874286
9.

Center of mass mechanics of chimpanzee bipedal walking.

Demes B, Thompson NE, O'Neill MC, Umberger BR.

Am J Phys Anthropol. 2015 Mar;156(3):422-33. doi: 10.1002/ajpa.22667. Epub 2014 Nov 19.

PMID:
25407636
10.

Mechanical energy in toddler gait. A trade-off between economy and stability?

Hallemans A, Aerts P, Otten B, De Deyn PP, De Clercq D.

J Exp Biol. 2004 Jun;207(Pt 14):2417-31.

11.

Pathophysiology of juvenile idiopathic arthritis induced pes planovalgus in static and walking condition: a functional view using 3D gait analysis.

Merker J, Hartmann M, Kreuzpointner F, Schwirtz A, Haas JP.

Pediatr Rheumatol Online J. 2015 Jun 10;13:21. doi: 10.1186/s12969-015-0022-z.

12.

The grazing gait, and implications of toppling table geometry for primate footfall sequences.

Usherwood JR, Smith BJH.

Biol Lett. 2018 May;14(5). pii: 20180137. doi: 10.1098/rsbl.2018.0137.

13.

The role of series ankle elasticity in bipedal walking.

Zelik KE, Huang TW, Adamczyk PG, Kuo AD.

J Theor Biol. 2014 Apr 7;346:75-85. doi: 10.1016/j.jtbi.2013.12.014. Epub 2013 Dec 21.

14.

Forelimb and hindlimb ground reaction forces of walking cats: assessment and comparison with walking dogs.

Corbee RJ, Maas H, Doornenbal A, Hazewinkel HA.

Vet J. 2014 Oct;202(1):116-27. doi: 10.1016/j.tvjl.2014.07.001. Epub 2014 Jul 9.

PMID:
25155217
15.

Foot segment kinematics during normal walking using a multisegment model of the foot and ankle complex.

Jenkyn TR, Anas K, Nichol A.

J Biomech Eng. 2009 Mar;131(3):034504. doi: 10.1115/1.2907750.

PMID:
19154075
16.

Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.

Queen RM, Sparling TL, Schmitt D.

Clin Orthop Relat Res. 2016 Sep;474(9):2055-63. doi: 10.1007/s11999-016-4921-1. Epub 2016 Jun 10.

17.
18.

Whole body mechanics of stealthy walking in cats.

Bishop KL, Pai AK, Schmitt D.

PLoS One. 2008;3(11):e3808. doi: 10.1371/journal.pone.0003808. Epub 2008 Nov 26.

19.

Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces.

Helms G, Behrens BA, Stolorz M, Wefstaedt P, Nolte I.

Biomed Eng Online. 2009 Nov 23;8:36. doi: 10.1186/1475-925X-8-36.

20.

Walking with increased ankle pushoff decreases hip muscle moments.

Lewis CL, Ferris DP.

J Biomech. 2008 Jul 19;41(10):2082-9. doi: 10.1016/j.jbiomech.2008.05.013. Epub 2008 Jul 7.

Supplemental Content

Support Center