Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 360

1.

Least-squares methods for identifying biochemical regulatory networks from noisy measurements.

Kim J, Bates DG, Postlethwaite I, Heslop-Harrison P, Cho KH.

BMC Bioinformatics. 2007 Jan 10;8:8.

2.

S-system parameter estimation for noisy metabolic profiles using newton-flow analysis.

Kutalik Z, Tucker W, Moulton V.

IET Syst Biol. 2007 May;1(3):174-80.

PMID:
17591176
3.
5.
6.

Selective integration of multiple biological data for supervised network inference.

Kato T, Tsuda K, Asai K.

Bioinformatics. 2005 May 15;21(10):2488-95. Epub 2005 Feb 22.

PMID:
15728114
7.

Reconstructing biological networks using conditional correlation analysis.

Rice JJ, Tu Y, Stolovitzky G.

Bioinformatics. 2005 Mar;21(6):765-73. Epub 2004 Oct 14.

PMID:
15486043
8.

Network completion using dynamic programming and least-squares fitting.

Nakajima N, Tamura T, Yamanishi Y, Horimoto K, Akutsu T.

ScientificWorldJournal. 2012;2012:957620. doi: 10.1100/2012/957620. Epub 2012 Nov 1.

9.

Parameter estimation in stochastic biochemical reactions.

Reinker S, Altman RM, Timmer J.

Syst Biol (Stevenage). 2006 Jul;153(4):168-78.

PMID:
16986618
10.

Inferring the role of transcription factors in regulatory networks.

Veber P, Guziolowski C, Le Borgne M, Radulescu O, Siegel A.

BMC Bioinformatics. 2008 May 6;9:228. doi: 10.1186/1471-2105-9-228.

11.

Causal relationship inference for a large-scale cellular network.

Zhou T, Wang YL.

Bioinformatics. 2010 Aug 15;26(16):2020-8. doi: 10.1093/bioinformatics/btq325. Epub 2010 Jun 16.

PMID:
20554691
12.

Unravelling gene networks from noisy under-determined experimental perturbation data.

de la Fuente A, Makhecha DP.

Syst Biol (Stevenage). 2006 Jul;153(4):257-62.

PMID:
16986627
13.

A Gibbs sampler for the identification of gene expression and network connectivity consistency.

Brynildsen MP, Tran LM, Liao JC.

Bioinformatics. 2006 Dec 15;22(24):3040-6. Epub 2006 Oct 23.

PMID:
17060361
14.

Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.

Werhli AV, Grzegorczyk M, Husmeier D.

Bioinformatics. 2006 Oct 15;22(20):2523-31. Epub 2006 Jul 14.

PMID:
16844710
16.

Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.

Kim J, Bates DG, Postlethwaite I, Heslop-Harrison P, Cho KH.

Bioinformatics. 2008 May 15;24(10):1286-92. doi: 10.1093/bioinformatics/btn107. Epub 2008 Mar 26.

PMID:
18367478
17.
18.

Fitting a geometric graph to a protein-protein interaction network.

Higham DJ, Rasajski M, Przulj N.

Bioinformatics. 2008 Apr 15;24(8):1093-9. doi: 10.1093/bioinformatics/btn079. Epub 2008 Mar 14.

PMID:
18344248
19.

Supervised inference of gene-regulatory networks.

To CC, Vohradsky J.

BMC Bioinformatics. 2008 Jan 4;9:2. doi: 10.1186/1471-2105-9-2.

Supplemental Content

Support Center