Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 245

1.

Profiling of CD4+, CD8+, and CD4+CD25+CD45RO+FoxP3+ T cells in patients with malignant glioma reveals differential expression of the immunologic transcriptome compared with T cells from healthy volunteers.

Learn CA, Fecci PE, Schmittling RJ, Xie W, Karikari I, Mitchell DA, Archer GE, Wei Z, Dressman H, Sampson JH.

Clin Cancer Res. 2006 Dec 15;12(24):7306-15.

2.

Extracorporeal photochemotherapy is accompanied by increasing levels of circulating CD4+CD25+GITR+Foxp3+CD62L+ functional regulatory T-cells in patients with graft-versus-host disease.

Biagi E, Di Biaso I, Leoni V, Gaipa G, Rossi V, Bugarin C, Renoldi G, Parma M, Balduzzi A, Perseghin P, Biondi A.

Transplantation. 2007 Jul 15;84(1):31-9.

PMID:
17627234
3.

Functional defect of circulating regulatory CD4+ T cells in patients with Wegener's granulomatosis in remission.

Abdulahad WH, Stegeman CA, van der Geld YM, Doornbos-van der Meer B, Limburg PC, Kallenberg CG.

Arthritis Rheum. 2007 Jun;56(6):2080-91.

4.

Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells.

Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, Cui X, Cummings TJ, Bigner DD, Gilboa E, Sampson JH.

Clin Cancer Res. 2006 Jul 15;12(14 Pt 1):4294-305.

5.

Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients.

Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, Yang H, Zhang H, Zhou C, Yao J, Jin L, Wang H, Yang Y, Fu YX, Wang FS.

Gastroenterology. 2007 Jun;132(7):2328-39.

PMID:
17570208
6.

CD4+ and CD8+ T cells expressing FoxP3 in HIV-infected patients are phenotypically distinct and influenced by disease severity and antiretroviral therapy.

Lim A, French MA, Price P.

J Acquir Immune Defic Syndr. 2009 Jul 1;51(3):248-57. doi: 10.1097/QAI.0b013e3181a74fad.

PMID:
19363449
7.

Decreased FOXP3 protein expression in patients with asthma.

Provoost S, Maes T, van Durme YM, Gevaert P, Bachert C, Schmidt-Weber CB, Brusselle GG, Joos GF, Tournoy KG.

Allergy. 2009 Oct;64(10):1539-46. doi: 10.1111/j.1398-9995.2009.02056.x.

8.

Dysfunctional CD4+,CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells.

Yan B, Ye S, Chen G, Kuang M, Shen N, Chen S.

Arthritis Rheum. 2008 Mar;58(3):801-12. doi: 10.1002/art.23268.

9.

[Decrease of FOXP3 mRNA in CD4+ T cells in latent autoimmune diabetes in adult].

Yang ZF, Zhou ZG, Tang WL, Huang G, Peng J, Li X, He L.

Zhonghua Yi Xue Za Zhi. 2006 Sep 26;86(36):2533-6. Chinese.

PMID:
17198560
10.

No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes.

Brusko T, Wasserfall C, McGrail K, Schatz R, Viener HL, Schatz D, Haller M, Rockell J, Gottlieb P, Clare-Salzler M, Atkinson M.

Diabetes. 2007 Mar;56(3):604-12.

11.

Differential changes in CD4+ and CD8+ effector and regulatory T lymphocyte subsets in the testis of rats undergoing autoimmune orchitis.

Jacobo P, Guazzone VA, Jarazo-Dietrich S, Theas MS, Lustig L.

J Reprod Immunol. 2009 Jul;81(1):44-54. doi: 10.1016/j.jri.2009.04.005.

PMID:
19520436
12.
13.
14.

Unique phenotype of human tonsillar and in vitro-induced FOXP3+CD8+ T cells.

Siegmund K, Rückert B, Ouaked N, Bürgler S, Speiser A, Akdis CA, Schmidt-Weber CB.

J Immunol. 2009 Feb 15;182(4):2124-30. doi: 10.4049/jimmunol.0802271.

15.

Characterization of CD4+ FOXP3+ T-cell clones established from chronic inflammatory lesions.

Okui T, Ito H, Honda T, Amanuma R, Yoshie H, Yamazaki K.

Oral Microbiol Immunol. 2008 Feb;23(1):49-54. doi: 10.1111/j.1399-302X.2007.00390.x.

PMID:
18173798
16.

Correlation between the degree of immune activation, production of IL-2 and FOXP3 expression in CD4+CD25+ T regulatory cells in HIV-1 infected persons under HAART.

Terzieva V, Popova D, Kicheva M, Todorova Y, Markova R, Martinova F, Elenkov I, Yankova M.

Int Immunopharmacol. 2009 Jul;9(7-8):831-6. doi: 10.1016/j.intimp.2009.03.009.

PMID:
19303058
17.

Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue.

Chaput N, Louafi S, Bardier A, Charlotte F, Vaillant JC, Ménégaux F, Rosenzwajg M, Lemoine F, Klatzmann D, Taieb J.

Gut. 2009 Apr;58(4):520-9. doi: 10.1136/gut.2008.158824.

PMID:
19022917
18.

Expression of naive/memory (CD45RA/CD45RO) markers by peripheral blood CD4+ and CD8 + T cells in children with asthma.

Machura E, Mazur B, Pieniazek W, Karczewska K.

Arch Immunol Ther Exp (Warsz). 2008 Jan-Feb;56(1):55-62. doi: 10.1007/s00005-008-0005-6.

19.

The FOXP3+ subset of human CD4+CD8+ thymocytes is immature and subject to intrathymic selection.

Tuovinen H, Pekkarinen PT, Rossi LH, Mattila I, Arstila TP.

Immunol Cell Biol. 2008 Aug-Sep;86(6):523-9. doi: 10.1038/icb.2008.36.

PMID:
18504453
20.

Transcript profile of CD4+ and CD8+ T cells from the bone marrow of acquired aplastic anemia patients.

Zeng W, Kajigaya S, Chen G, Risitano AM, Nunez O, Young NS.

Exp Hematol. 2004 Sep;32(9):806-14.

PMID:
15345281

Supplemental Content

Support Center