Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 285

1.

Experimental study on sludge reduction by ultrasound.

Cao XQ, Chen J, Cao YL, Zhu JY, Hao XD.

Water Sci Technol. 2006;54(9):87-93.

PMID:
17163046
2.

Ultrasonic reduction of excess sludge from the activated sludge system.

Zhang G, Zhang P, Yang J, Chen Y.

J Hazard Mater. 2007 Jul 16;145(3):515-9. Epub 2007 Feb 3.

PMID:
17412495
3.

Potential of activated sludge disintegration.

Boehler M, Siegrist H.

Water Sci Technol. 2006;53(12):207-16.

PMID:
16889257
4.

Ultrasonic reduction of excess sludge from activated sludge system II: urban sewage treatment.

Zhang G, He J, Zhang P, Zhang J.

J Hazard Mater. 2009 May 30;164(2-3):1105-9. doi: 10.1016/j.jhazmat.2008.09.015. Epub 2008 Sep 12.

PMID:
18926629
5.

Influence of ultrasonic disintegration on sludge growth reduction and its estimation by respirometry.

Rai CL, Struenkmann G, Mueller J, Rao PG.

Environ Sci Technol. 2004 Nov 1;38(21):5779-85.

PMID:
15575300
6.

Phosphorus recycling in sewage treatment plants with biological phosphorus removal.

Heinzmann B.

Water Sci Technol. 2005;52(10-11):543-8.

PMID:
16459832
7.

Minimization of excess sludge production for biological wastewater treatment.

Wei Y, Van Houten RT, Borger AR, Eikelboom DH, Fan Y.

Water Res. 2003 Nov;37(18):4453-67. Review.

PMID:
14511716
8.

Effects of ultrasonic disintegration on sludge microbial activity and dewaterability.

Huan L, Yiying J, Mahar RB, Zhiyu W, Yongfeng N.

J Hazard Mater. 2009 Jan 30;161(2-3):1421-6. doi: 10.1016/j.jhazmat.2008.04.113. Epub 2008 May 3.

PMID:
18547717
9.
10.

Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment.

Ma H, Zhang S, Lu X, Xi B, Guo X, Wang H, Duan J.

Bioresour Technol. 2012 Jul;116:441-7. doi: 10.1016/j.biortech.2012.03.091. Epub 2012 Apr 4.

PMID:
22522015
11.

Reduction of excess sludge production using mechanical disintegration devices.

Strünkmann GW, Müller JA, Albert F, Schwedes J.

Water Sci Technol. 2006;54(5):69-76.

PMID:
17087371
12.
13.

Operation of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery.

Saktaywin W, Tsuno H, Nagare H, Soyama T.

Water Sci Technol. 2006;53(12):217-27.

PMID:
16889258
14.
15.

Observations on ozone treatment of excess sludge.

Zhao YX, Yin J, Yu HL, Han N, Tian FJ.

Water Sci Technol. 2007;56(9):167-75. Erratum in: Water Sci Technol. 2008;57(4):637.

PMID:
18025744
16.

Application of ozonation to reduce biological sludge production in an industrial wastewater treatment plant.

Albuquerque JS, Domingos JC, Sant'Anna GL Jr, Dezotti M.

Water Sci Technol. 2008;58(10):1971-6. doi: 10.2166/wst.2008.554.

PMID:
19039177
17.

Feasibility of using a chlorination step to reduce excess sludge in activated sludge process.

Saby S, Djafer M, Chen GH.

Water Res. 2002 Feb;36(3):656-66.

PMID:
11827328
18.

Comparative study of MBR and activated sludge in the treatment of paper mill wastewater.

Lerner M, Stahl N, Galil NI.

Water Sci Technol. 2007;55(6):23-9.

PMID:
17486831
19.

Effective sludge solubilization treatment by simultaneous use of ultrasonic and electrochemical processes.

Watanabe T, Zeng DY, Cho KJ, Kuroda M.

Water Sci Technol. 2006;53(6):37-42.

PMID:
16749437
20.

Cost-efficient operation of a denitrifying activated sludge process.

Samuelsson P, Halvarsson B, Carlsson B.

Water Res. 2007 Jun;41(11):2325-32. Epub 2007 Apr 23.

PMID:
17451780

Supplemental Content

Support Center