Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Transcriptional activation domains of the Candida albicans Gcn4p and Gal4p homologs.

Martchenko M, Levitin A, Whiteway M.

Eukaryot Cell. 2007 Feb;6(2):291-301. Epub 2006 Dec 8.

2.

Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans.

Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S, Whiteway M, Brown AJ.

Eukaryot Cell. 2004 Oct;3(5):1111-23.

3.

Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae.

Hoppen J, Dietz M, Warsow G, Rohde R, Schüller HJ.

Mol Genet Genomics. 2007 Sep;278(3):317-30. Epub 2007 Jun 23.

PMID:
17588177
4.

Fungal mediator tail subunits contain classical transcriptional activation domains.

Liu Z, Myers LC.

Mol Cell Biol. 2015 Apr;35(8):1363-75. doi: 10.1128/MCB.01508-14. Epub 2015 Feb 2.

5.
6.

Global role of the protein kinase Gcn2 in the human pathogen Candida albicans.

Tournu H, Tripathi G, Bertram G, Macaskill S, Mavor A, Walker L, Odds FC, Gow NA, Brown AJ.

Eukaryot Cell. 2005 Oct;4(10):1687-96.

7.

Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae.

Coste AT, Ramsdale M, Ischer F, Sanglard D.

Microbiology. 2008 May;154(Pt 5):1491-501. doi: 10.1099/mic.0.2007/016063-0.

PMID:
18451058
8.

Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans.

Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M.

PLoS Pathog. 2009 Oct;5(10):e1000612. doi: 10.1371/journal.ppat.1000612. Epub 2009 Oct 9.

9.

Transcriptional rewiring of fungal galactose-metabolism circuitry.

Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M.

Curr Biol. 2007 Jun 19;17(12):1007-13. Epub 2007 May 31.

10.

Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans.

Tripathi G, Wiltshire C, Macaskill S, Tournu H, Budge S, Brown AJ.

EMBO J. 2002 Oct 15;21(20):5448-56.

11.

Rap1 in Candida albicans: an unusual structural organization and a critical function in suppressing telomere recombination.

Yu EY, Yen WF, Steinberg-Neifach O, Lue NF.

Mol Cell Biol. 2010 Mar;30(5):1254-68. doi: 10.1128/MCB.00986-09. Epub 2009 Dec 14.

12.

A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of C. albicans.

Ishii N, Yamamoto M, Lahm HW, Iizumi S, Yoshihara F, Nakayama H, Arisawa M, Aoki Y.

Microbiology. 1997 Feb;143 ( Pt 2):417-27.

PMID:
9043119
13.

Transcriptional profiling of cross pathway control in Neurospora crassa and comparative analysis of the Gcn4 and CPC1 regulons.

Tian C, Kasuga T, Sachs MS, Glass NL.

Eukaryot Cell. 2007 Jun;6(6):1018-29. Epub 2007 Apr 20.

14.

The Aspergillus niger GCN4 homologue, cpcA, is transcriptionally regulated and encodes an unusual leucine zipper.

Wanke C, Eckert S, Albrecht G, van Hartingsveldt W, Punt PJ, van den Hondel CA, Braus GH.

Mol Microbiol. 1997 Jan;23(1):23-33.

15.
16.

Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo.

Kim SJ, Swanson MJ, Qiu H, Govind CK, Hinnebusch AG.

Mol Cell Biol. 2005 Dec;25(24):11171-83.

18.

Homologs of the yeast neck filament associated genes: isolation and sequence analysis of Candida albicans CDC3 and CDC10.

DiDomenico BJ, Brown NH, Lupisella J, Greene JR, Yanko M, Koltin Y.

Mol Gen Genet. 1994 Mar;242(6):689-98.

PMID:
8152419
19.
20.

Supplemental Content

Support Center