Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 421

1.

[Comparative study of the rod and cone contributions to the generation of b-wave ERG and tectal evoked potential in the dark-adapted carp].

Garina NS, Erchenkov VG, Vorontsov DD, Semina TK.

Zh Vyssh Nerv Deiat Im I P Pavlova. 2006 Sep-Oct;56(5):698-705. Russian.

PMID:
17147211
2.

Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.

Popova E, Kupenova P.

Vision Res. 2009 Jul;49(15):2001-10. doi: 10.1016/j.visres.2009.05.010. Epub 2009 May 20.

3.

Temporal analysis of electroretinographic responses in fishes with rod-dominated and mixed rod-cone retina.

Milosević M, Visnjić-Jeftić Z, Damjanović I, Nikcević M, Andjus P, Gacić Z.

Gen Physiol Biophys. 2009 Sep;28(3):276-82.

PMID:
20037193
5.

Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats.

Sugawara T, Sieving PA, Bush RA.

Exp Eye Res. 2000 May;70(5):693-705.

PMID:
10870528
6.

Study of rod- and cone-driven oscillatory potentials in mice.

Lei B, Yao G, Zhang K, Hofeldt KJ, Chang B.

Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2732-8.

PMID:
16723493
7.

Characterization of the rod photoresponse isolated from the dark-adapted primate ERG.

Jamison JA, Bush RA, Lei B, Sieving PA.

Vis Neurosci. 2001 May-Jun;18(3):445-55.

PMID:
11497421
8.

The d-wave of the rod electroretinogram of rat originates in the cone pathway.

Naarendorp F, Williams GE.

Vis Neurosci. 1999 Jan-Feb;16(1):91-105.

PMID:
10022481
9.

[The electroretinogram of the dark-adapted intact carp Carpio cyprinus L. to color substitution].

Chernorizov AM, Sokolov EN.

Zh Vyssh Nerv Deiat Im I P Pavlova. 1995 Jan-Feb;45(1):155-62. Russian.

PMID:
7754686
10.

Circadian rhythms of rod-cone dominance in the Japanese quail retina.

Manglapus MK, Uchiyama H, Buelow NF, Barlow RB.

J Neurosci. 1998 Jun 15;18(12):4775-84.

11.

Contribution of post-receptoral cells to the a-wave of the human photopic electroretinogram.

Bradshaw K.

Vision Res. 2007 Oct;47(22):2878-88. Epub 2007 Sep 11.

12.

A comparison of three techniques to estimate the human dark-adapted cone electroretinogram.

Verdon WA, Schneck ME, Haegerstrom-Portnoy G.

Vision Res. 2003 Sep;43(19):2089-99.

13.
14.

Rod contributions to the electroretinogram of the dark-adapted developing zebrafish.

Bilotta J, Saszik S, Sutherland SE.

Dev Dyn. 2001 Dec;222(4):564-70.

16.

Ultraviolet light-induced and green light-induced transient pupillary light reflex in mice.

Yao G, Zhang K, Bellassai M, Chang B, Lei B.

Curr Eye Res. 2006 Nov;31(11):925-33.

PMID:
17114118
17.

Changes in glucose level affect rod function more than cone function in the isolated, perfused cat eye.

Macaluso C, Onoe S, Niemeyer G.

Invest Ophthalmol Vis Sci. 1992 Sep;33(10):2798-808.

PMID:
1526729
18.

The electroretinogram of the rhodopsin knockout mouse.

Toda K, Bush RA, Humphries P, Sieving PA.

Vis Neurosci. 1999 Mar-Apr;16(2):391-8.

PMID:
10367972
19.

The development of the rod photoresponse from dark-adapted rats.

Fulton AB, Hansen RM, Findl O.

Invest Ophthalmol Vis Sci. 1995 May;36(6):1038-45.

PMID:
7730013
20.

Development of electroretinogram and rod phototransduction response in human infants.

Breton ME, Quinn GE, Schueller AW.

Invest Ophthalmol Vis Sci. 1995 Jul;36(8):1588-602.

PMID:
7601640

Supplemental Content

Support Center