Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Generation and reshaping of sequences in neural systems.

Rabinovich MI, Huerta R, Varona P, Afraimovich VS.

Biol Cybern. 2006 Dec;95(6):519-36. Epub 2006 Nov 29. Review.

PMID:
17136380
2.

Dynamical coding of sensory information with competitive networks.

Rabinovich MI, Huerta R, Volkovskii A, Abarbanel HD, Stopfer M, Laurent G.

J Physiol Paris. 2000 Sep-Dec;94(5-6):465-71.

PMID:
11165913
3.

Degenerate coding in neural systems.

Leonardo A.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Nov;191(11):995-1010. Epub 2005 Oct 27. Review.

PMID:
16252121
4.

Dual sensory-motor function for a molluskan statocyst network.

Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI.

J Neurophysiol. 2004 Jan;91(1):336-45. Epub 2003 Sep 24.

5.

The role of sensory network dynamics in generating a motor program.

Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI.

J Neurosci. 2005 Oct 19;25(42):9807-15.

6.

Dynamical foundations of the neural circuit for bayesian decision making.

Morita K.

J Neurophysiol. 2009 Jul;102(1):1-6. doi: 10.1152/jn.00239.2009. Epub 2009 Apr 29.

7.

Smelling, tasting, learning: Drosophila as a study case.

Gerber B, Stocker RF, Tanimura T, Thum AS.

Results Probl Cell Differ. 2009;47:139-85. doi: 10.1007/400_2008_9. Review.

PMID:
19145411
8.

A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

Siri B, Berry H, Cessac B, Delord B, Quoy M.

Neural Comput. 2008 Dec;20(12):2937-66. doi: 10.1162/neco.2008.05-07-530.

PMID:
18624656
9.

Winnerless competition between sensory neurons generates chaos: A possible mechanism for molluscan hunting behavior.

Varona P, Rabinovich MI, Selverston AI, Arshavsky YI.

Chaos. 2002 Sep;12(3):672-677.

PMID:
12779595
10.

Agent computing themes in biologically inspired models of learning and development.

Reilly KD.

Int J Dev Neurosci. 2002 Jun-Aug;20(3-5):269-85. Review.

PMID:
12175862
11.

Oscillation and coding in a formal neural network considered as a guide for plausible simulations of the insect olfactory system.

Horcholle-Bossavit G, Quenet B, Foucart O.

Biosystems. 2007 May-Jun;89(1-3):244-56. Epub 2006 Nov 15.

PMID:
17316971
12.

Internal representations of smell in the Drosophila brain.

Lin HH, Lin CY, Chiang AS.

J Biomed Sci. 2007 Jul;14(4):453-9. Epub 2007 Apr 14. Review.

PMID:
17440836
13.

Exploring olfactory population coding using an artificial olfactory system.

White J, Kauer JS.

Prog Brain Res. 2001;130:191-203. Review. No abstract available.

PMID:
11480275
14.

Pacemaker and network mechanisms of rhythm generation: cooperation and competition.

Ivanchenko MV, Thomas Nowotny, Selverston AI, Rabinovich MI.

J Theor Biol. 2008 Aug 7;253(3):452-61. doi: 10.1016/j.jtbi.2008.04.016. Epub 2008 Apr 26.

PMID:
18514740
15.
16.

Experience-induced neural circuits that achieve high capacity.

Feldman V, Valiant LG.

Neural Comput. 2009 Oct;21(10):2715-54. doi: 10.1162/neco.2009.08-08-851.

PMID:
19635015
17.

An embodied account of serial order: how instabilities drive sequence generation.

Sandamirskaya Y, Schöner G.

Neural Netw. 2010 Dec;23(10):1164-79. doi: 10.1016/j.neunet.2010.07.012. Epub 2010 Aug 6.

PMID:
20800989
18.

[Research progress of the olfactory neural system recognition model].

Zheng Q, Shen X, Wang P, Ye X.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Feb;25(1):200-3. Review. Chinese.

PMID:
18435290
19.

Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans.

Ha HI, Hendricks M, Shen Y, Gabel CV, Fang-Yen C, Qin Y, Colón-Ramos D, Shen K, Samuel AD, Zhang Y.

Neuron. 2010 Dec 22;68(6):1173-86. doi: 10.1016/j.neuron.2010.11.025.

20.

Modelling efficiency in insect olfactory information processing.

Gu Y, Liljenström H.

Biosystems. 2007 May-Jun;89(1-3):236-43. Epub 2006 Nov 15.

PMID:
17307286

Supplemental Content

Support Center