Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Role of cellular compartmentation in the metabolic response to stress: mechanistic insights from computational models.

Zhou L, Yu X, Cabrera ME, Stanley WC.

Ann N Y Acad Sci. 2006 Oct;1080:120-39. Review.

PMID:
17132780
2.

Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia.

Zhou L, Salem JE, Saidel GM, Stanley WC, Cabrera ME.

Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2400-11. Epub 2005 Jan 28.

PMID:
15681693
3.

Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies.

Zhou L, Cabrera ME, Okere IC, Sharma N, Stanley WC.

Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1036-46. Epub 2006 Apr 7.

PMID:
16603683
4.

Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.

Zhou L, Stanley WC, Saidel GM, Yu X, Cabrera ME.

J Physiol. 2005 Dec 15;569(Pt 3):925-37. Epub 2005 Oct 13.

5.

Regulation of cardiac energetics: role of redox state and cellular compartmentation during ischemia.

Cabrera ME, Zhou L, Stanley WC, Saidel GM.

Ann N Y Acad Sci. 2005 Jun;1047:259-70.

PMID:
16093502
6.

The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.

Yaniv Y, Stanley WC, Saidel GM, Cabrera ME, Landesberg A.

Ann N Y Acad Sci. 2008 Mar;1123:69-78. doi: 10.1196/annals.1420.009.

PMID:
18375579
7.

Cardiac energy metabolism homeostasis: role of cytosolic calcium.

Balaban RS.

J Mol Cell Cardiol. 2002 Oct;34(10):1259-71. Review.

PMID:
12392982
8.

Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.

Bakker BM, Overkamp KM, van Maris AJ, K├Âtter P, Luttik MA, van Dijken JP, Pronk JT.

FEMS Microbiol Rev. 2001 Jan;25(1):15-37. Review.

9.

Computational studies of the effects of myocardial blood flow reductions on cardiac metabolism.

Salem JE, Stanley WC, Cabrera ME.

Biomed Eng Online. 2004 Jun 2;3(1):15.

10.
11.

Limited transfer of cytosolic NADH into mitochondria at high cardiac workload.

O'Donnell JM, Kudej RK, LaNoue KF, Vatner SF, Lewandowski ED.

Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2237-42. Epub 2004 Jan 29.

PMID:
14751856
12.

Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.

Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC.

J Physiol. 2007 Mar 15;579(Pt 3):811-21. Epub 2006 Dec 21.

13.

Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.

Li Y, Dash RK, Kim J, Saidel GM, Cabrera ME.

Am J Physiol Cell Physiol. 2009 Jan;296(1):C25-46. doi: 10.1152/ajpcell.00094.2008. Epub 2008 Oct 1.

14.
15.
16.

Dynamic simulation of mitochondrial respiration and oxidative phosphorylation: comparison with experimental results.

Guillaud F, Hannaert P.

Acta Biotheor. 2008 Jun;56(1-2):157-72. doi: 10.1007/s10441-008-9035-z. Epub 2008 Jan 30.

PMID:
18231864
17.

Modeling the mechanism of metabolic oscillations in ischemic cardiac myocytes.

Saleet Jafri M, Kotulska M.

J Theor Biol. 2006 Oct 21;242(4):801-17. Epub 2006 May 19.

PMID:
16814324
18.

Modeling cellular metabolism and energetics in skeletal muscle: large-scale parameter estimation and sensitivity analysis.

Dash RK, Li Y, Kim J, Saidel GM, Cabrera ME.

IEEE Trans Biomed Eng. 2008 Apr;55(4):1298-318. doi: 10.1109/TBME.2007.913422.

PMID:
18390321
19.

Targeting aspartate aminotransferase in breast cancer.

Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A, Eaton JW, Telang S, Chesney J.

Breast Cancer Res. 2008;10(5):R84. doi: 10.1186/bcr2154. Epub 2008 Oct 15.

20.

Supplemental Content

Support Center