Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95


Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome.

Burney S, Hoang N, Caruso M, Dudkin EA, Ahmad M, Bouly JP.

FEBS Lett. 2009 May 6;583(9):1427-33. doi: 10.1016/j.febslet.2009.03.040.


Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1.

Bouly JP, Giovani B, Djamei A, Mueller M, Zeugner A, Dudkin EA, Batschauer A, Ahmad M.

Eur J Biochem. 2003 Jul;270(14):2921-8.


The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.

Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A.

J Biol Chem. 2007 May 18;282(20):14916-22.


Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.

Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J.

Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12142-7.


Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.

Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M.

J Biol Chem. 2007 Mar 30;282(13):9383-91.


Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function.

Zeugner A, Byrdin M, Bouly JP, Bakrim N, Giovani B, Brettel K, Ahmad M.

J Biol Chem. 2005 May 20;280(20):19437-40.


Functional analysis and intracellular localization of rice cryptochromes.

Matsumoto N, Hirano T, Iwasaki T, Yamamoto N.

Plant Physiol. 2003 Dec;133(4):1494-503.


Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes.

Hitomi K, DiTacchio L, Arvai AS, Yamamoto J, Kim ST, Todo T, Tainer JA, Iwai S, Panda S, Getzoff ED.

Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6962-7. doi: 10.1073/pnas.0809180106.


ATP binding turns plant cryptochrome into an efficient natural photoswitch.

Müller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K.

Sci Rep. 2014 Jun 5;4:5175. doi: 10.1038/srep05175.


Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.

Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W.

Planta. 2007 Feb;225(3):615-24.


Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1.

Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR.

Science. 1995 Aug 18;269(5226):968-70.


Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana.

Kang B, Grancher N, Koyffmann V, Lardemer D, Burney S, Ahmad M.

Planta. 2008 Apr;227(5):1091-9. doi: 10.1007/s00425-007-0683-z.


Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1.

Shalitin D, Yu X, Maymon M, Mockler T, Lin C.

Plant Cell. 2003 Oct;15(10):2421-9.


ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome.

Cailliez F, Müller P, Gallois M, de la Lande A.

J Am Chem Soc. 2014 Sep 17;136(37):12974-86. doi: 10.1021/ja506084f.


Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.

Kottke T, Batschauer A, Ahmad M, Heberle J.

Biochemistry. 2006 Feb 28;45(8):2472-9.


Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly.

Song SH, Oztürk N, Denaro TR, Arat NO, Kao YT, Zhu H, Zhong D, Reppert SM, Sancar A.

J Biol Chem. 2007 Jun 15;282(24):17608-12.


The cryptochromes: blue light photoreceptors in plants and animals.

Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M.

Annu Rev Plant Biol. 2011;62:335-64. doi: 10.1146/annurev-arplant-042110-103759. Review.


A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.

Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E.

J Biol Chem. 2007 Apr 27;282(17):13011-21.


Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.

Gao J, Wang X, Zhang M, Bian M, Deng W, Zuo Z, Yang Z, Zhong D, Lin C.

Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9135-40. doi: 10.1073/pnas.1504404112.

Items per page

Supplemental Content

Support Center