Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection.

Hunter M, Backman V, Popescu G, Kalashnikov M, Boone CW, Wax A, Gopal V, Badizadegan K, Stoner GD, Feld MS.

Phys Rev Lett. 2006 Sep 29;97(13):138102. Epub 2006 Sep 28.

PMID:
17026078
2.

Probing multifractality in tissue refractive index: prospects for precancer detection.

Das N, Chatterjee S, Soni J, Jagtap J, Pradhan A, Sengupta TK, Panigrahi PK, Vitkin IA, Ghosh N.

Opt Lett. 2013 Jan 15;38(2):211-3. doi: 10.1364/OL.38.000211.

PMID:
23454965
3.

Comparison of light scattering models for diffuse optical tomography.

González-Rodríguez P, Kim AD.

Opt Express. 2009 May 25;17(11):8756-74.

PMID:
19466125
4.

Differing self-similarity in light scattering spectra: a potential tool for pre-cancer detection.

Ghosh S, Soni J, Purwar H, Jagtap J, Pradhan A, Ghosh N, Panigrahi PK.

Opt Express. 2011 Sep 26;19(20):19717-30. doi: 10.1364/OE.19.019717.

PMID:
21996914
5.

Analytical techniques for addressing forward and inverse problems of light scattering by irregularly shaped particles.

Li X, Chen Z, Gong J, Taflove A, Backman V.

Opt Lett. 2004 Jun 1;29(11):1239-41.

PMID:
15209259
6.

Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media.

Capoğlu IR, Rogers JD, Taflove A, Backman V.

Opt Lett. 2009 Sep 1;34(17):2679-81. doi: 10.1364/OL.34.002679.

PMID:
19724530
7.
8.

Tissue multifractality and Born approximation in analysis of light scattering: a novel approach for precancers detection.

Das N, Chatterjee S, Kumar S, Pradhan A, Panigrahi P, Vitkin IA, Ghosh N.

Sci Rep. 2014 Aug 20;4:6129. doi: 10.1038/srep06129.

9.

Cell proliferation and esophageal carcinogenesis in the zinc-deficient rat.

Fong LY, Li JX, Farber JL, Magee PN.

Carcinogenesis. 1996 Sep;17(9):1841-8.

PMID:
8824504
10.

Fractal model of light scattering in biological tissue and cells.

Sheppard CJ.

Opt Lett. 2007 Jan 15;32(2):142-4.

PMID:
17186044
11.

In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry.

Wax A, Yang C, Müller MG, Nines R, Boone CW, Steele VE, Stoner GD, Dasari RR, Feld MS.

Cancer Res. 2003 Jul 1;63(13):3556-9.

12.
13.

Fractal mechanisms of light scattering in biological tissue and cells.

Xu M, Alfano RR.

Opt Lett. 2005 Nov 15;30(22):3051-3.

PMID:
16315718
14.

Quantitation of preinvasive neoplastic progression in animal models of chemical carcinogenesis.

Bacus JW, Bacus JV, Stoner GD, Moon RC, Kelloff GJ, Boone CW.

J Cell Biochem Suppl. 1997;28-29:21-38.

PMID:
9589347
15.

Spectral changes of the light produced by scattering from tissue.

Gao W.

Opt Lett. 2010 Mar 15;35(6):862-4. doi: 10.1364/OL.35.000862.

PMID:
20237624
16.

NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes.

Georgakoudi I, Jacobson BC, Müller MG, Sheets EE, Badizadegan K, Carr-Locke DL, Crum CP, Boone CW, Dasari RR, Van Dam J, Feld MS.

Cancer Res. 2002 Feb 1;62(3):682-7.

17.

The combined use of fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in Barrett's esophagus.

Georgakoudi I, Feld MS.

Gastrointest Endosc Clin N Am. 2004 Jul;14(3):519-37, ix. Review.

PMID:
15261200
18.
19.
20.

Artifacts resulting from imaging in scattering media: a theoretical prediction.

Rohrbach A.

Opt Lett. 2009 Oct 1;34(19):3041-3. doi: 10.1364/OL.34.003041.

PMID:
19794809

Supplemental Content

Support Center