Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 238

2.

Intrinsic fluorescence spectroscopy for endoscopic detection and localization of the endobronchial cancerous lesions.

Fawzy Y, Zeng H.

J Biomed Opt. 2008 Nov-Dec;13(6):064022. doi: 10.1117/1.3041704.

PMID:
19123668
4.

Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection.

Martin ME, Wabuyele MB, Chen K, Kasili P, Panjehpour M, Phan M, Overholt B, Cunningham G, Wilson D, Denovo RC, Vo-Dinh T.

Ann Biomed Eng. 2006 Jun;34(6):1061-8. Epub 2006 May 9.

PMID:
16783661
5.

In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy.

Bargo PR, Prahl SA, Goodell TT, Sleven RA, Koval G, Blair G, Jacques SL.

J Biomed Opt. 2005 May-Jun;10(3):034018.

PMID:
16229662
6.

An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging.

Martin ME, Wabuyele M, Panjehpour M, Overholt B, DeNovo R, Kennel S, Cunningham G, Vo-Dinh T.

Med Eng Phys. 2006 Mar;28(2):149-55. Epub 2005 Jun 13.

PMID:
15955718
7.

Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy.

Volynskaya Z, Haka AS, Bechtel KL, Fitzmaurice M, Shenk R, Wang N, Nazemi J, Dasari RR, Feld MS.

J Biomed Opt. 2008 Mar-Apr;13(2):024012. doi: 10.1117/1.2909672.

PMID:
18465975
8.

Novel optical detection system for in vivo identification and localization of cervical intraepithelial neoplasia.

Schomacker KT, Meese TM, Jiang C, Abele CC, Dickson K, Sum ST, Flewelling RF.

J Biomed Opt. 2006 May-Jun;11(3):34009.

PMID:
16822059
9.

Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo.

Yu B, Lo JY, Kuech TF, Palmer GM, Bender JE, Ramanujam N.

J Biomed Opt. 2008 Nov-Dec;13(6):060505. doi: 10.1117/1.3041500.

PMID:
19123646
10.

Liquid-crystal tunable filter spectral imaging for brain tumor demarcation.

Gebhart SC, Thompson RC, Mahadevan-Jansen A.

Appl Opt. 2007 Apr 1;46(10):1896-910.

PMID:
17356636
11.
12.
13.

Sensitivity characterization of a time-domain fluorescence imager: eXplore Optix.

Ma G, Gallant P, McIntosh L.

Appl Opt. 2007 Apr 1;46(10):1650-7.

PMID:
17356607
14.
15.

An excitation wavelength-scanning spectral imaging system for preclinical imaging.

Leavesley S, Jiang Y, Patsekin V, Rajwa B, Robinson JP.

Rev Sci Instrum. 2008 Feb;79(2 Pt 1):023707. doi: 10.1063/1.2885043.

PMID:
18315305
16.

Fluorescence spectra provide information on the depth of fluorescent lesions in tissue.

Swartling J, Svensson J, Bengtsson D, Terike K, Andersson-Engels S.

Appl Opt. 2005 Apr 1;44(10):1934-41.

PMID:
15813529
17.

Reflectance recovery for airborne sensor images of 3D scenes.

Chandra K, Healey G.

J Opt Soc Am A Opt Image Sci Vis. 2007 Apr;24(4):957-66.

PMID:
17361281
18.

Autofluorescence and diffuse reflectance spectroscopy for oral oncology.

de Veld DC, Skurichina M, Witjes MJ, Duin RP, Sterenborg HJ, Roodenburg JL.

Lasers Surg Med. 2005 Jun;36(5):356-64.

PMID:
15856507
19.

Optical spectroscopy detects histological hallmarks of pancreatic cancer.

Wilson RH, Chandra M, Scheiman J, Simeone D, McKenna B, Purdy J, Mycek MA.

Opt Express. 2009 Sep 28;17(20):17502-16. doi: 10.1364/OE.17.017502.

PMID:
19907534
20.

Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy.

de Veld DC, Skurichina M, Witjes MJ, Duin RP, Sterenborg HJ, Roodenburg JL.

J Biomed Opt. 2004 Sep-Oct;9(5):940-50.

PMID:
15447015

Supplemental Content

Support Center