Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 201

1.

Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties.

van Lenthe GH, Stauber M, Müller R.

Bone. 2006 Dec;39(6):1182-9. Epub 2006 Sep 1.

PMID:
16949356
2.

Fast trabecular bone strength predictions of HR-pQCT and individual trabeculae segmentation-based plate and rod finite element model discriminate postmenopausal vertebral fractures.

Liu XS, Wang J, Zhou B, Stein E, Shi X, Adams M, Shane E, Guo XE.

J Bone Miner Res. 2013 Jul;28(7):1666-78. doi: 10.1002/jbmr.1919.

3.

Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam-shell finite element models.

Vanderoost J, Jaecques SV, Van der Perre G, Boonen S, D'hooge J, Lauriks W, van Lenthe GH.

J Biomech. 2011 May 17;44(8):1566-72. doi: 10.1016/j.jbiomech.2011.02.082. Epub 2011 Mar 16.

PMID:
21414627
4.

Accuracy of individual trabecula segmentation based plate and rod finite element models in idealized trabecular bone microstructure.

Wang H, Liu XS, Zhou B, Wang J, Ji B, Huang Y, Hwang KC, Guo XE.

J Biomech Eng. 2013 Apr;135(4):044502. doi: 10.1115/1.4023983.

5.

Finite element modeling of the human thoracolumbar spine.

Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM.

Spine (Phila Pa 1976). 2003 Mar 15;28(6):559-65.

PMID:
12642762
6.

Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.

Wang J, Zhou B, Liu XS, Fields AJ, Sanyal A, Shi X, Adams M, Keaveny TM, Guo XE.

Bone. 2015 Mar;72:71-80. doi: 10.1016/j.bone.2014.11.006. Epub 2014 Nov 15.

7.
8.
9.

Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone.

Liu XS, Zhang XH, Guo XE.

Bone. 2009 Aug;45(2):158-63. doi: 10.1016/j.bone.2009.04.201. Epub 2009 Apr 18.

10.

Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution.

Bevill G, Keaveny TM.

Bone. 2009 Apr;44(4):579-84. doi: 10.1016/j.bone.2008.11.020. Epub 2008 Dec 14.

PMID:
19135184
11.

Finite element dependence of stress evaluation for human trabecular bone.

Depalle B, Chapurlat R, Walter-Le-Berre H, Bou-Saïd B, Follet H.

J Mech Behav Biomed Mater. 2013 Feb;18:200-12. doi: 10.1016/j.jmbbm.2012.08.012. Epub 2012 Nov 21.

PMID:
23246384
12.

Comparison of trabecular bone behavior in core and whole bone samples using high-resolution modeling of a vertebral body.

Harrison NM, McHugh PE.

Biomech Model Mechanobiol. 2010 Aug;9(4):469-80. doi: 10.1007/s10237-009-0188-8. Epub 2010 Jan 12.

PMID:
20066462
13.

Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method.

Macneil JA, Boyd SK.

Bone. 2008 Jun;42(6):1203-13. doi: 10.1016/j.bone.2008.01.017. Epub 2008 Feb 13.

PMID:
18358799
14.

HR-pQCT-based homogenised finite element models provide quantitative predictions of experimental vertebral body stiffness and strength with the same accuracy as μFE models.

Pahr DH, Dall'Ara E, Varga P, Zysset PK.

Comput Methods Biomech Biomed Engin. 2012;15(7):711-20. doi: 10.1080/10255842.2011.556627. Epub 2011 May 24.

PMID:
21480081
15.

The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties.

Bevill G, Eswaran SK, Farahmand F, Keaveny TM.

Bone. 2009 Apr;44(4):573-8. doi: 10.1016/j.bone.2008.11.015. Epub 2008 Dec 8.

PMID:
19110082
16.

Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone.

Yeni YN, Christopherson GT, Dong XN, Kim DG, Fyhrie DP.

J Biomech Eng. 2005 Feb;127(1):1-8.

PMID:
15868782
17.

Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.

Follet H, Peyrin F, Vidal-Salle E, Bonnassie A, Rumelhart C, Meunier PJ.

J Biomech. 2007;40(10):2174-83. Epub 2006 Dec 29.

PMID:
17196599
18.

Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus.

van Lenthe GH, Voide R, Boyd SK, Müller R.

Bone. 2008 Oct;43(4):717-23. doi: 10.1016/j.bone.2008.06.008. Epub 2008 Jun 27.

PMID:
18639658
19.

Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness.

Stauber M, Rapillard L, van Lenthe GH, Zysset P, Müller R.

J Bone Miner Res. 2006 Apr;21(4):586-95. Epub 2006 Apr 5.

20.

Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS).

Zhou B, Liu XS, Wang J, Lu XL, Fields AJ, Guo XE.

J Biomech. 2014 Feb 7;47(3):702-8. doi: 10.1016/j.jbiomech.2013.11.039. Epub 2013 Dec 1.

Supplemental Content

Support Center