Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95


Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates.

Chen JW, Querol Sans M, Bogdanov A Jr, Weissleder R.

Radiology. 2006 Aug;240(2):473-81. Erratum in: Radiology. 2007 Jan;242(1):320.


A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo.

Shazeeb MS, Xie Y, Gupta S, Bogdanov AA Jr.

Mol Imaging. 2012 Sep-Oct;11(5):433-43.


Vasculitis: molecular imaging by targeting the inflammatory enzyme myeloperoxidase.

Su HS, Nahrendorf M, Panizzi P, Breckwoldt MO, Rodriguez E, Iwamoto Y, Aikawa E, Weissleder R, Chen JW.

Radiology. 2012 Jan;262(1):181-90. doi: 10.1148/radiol.11110040. Epub 2011 Nov 14.


Demyelinating diseases: myeloperoxidase as an imaging biomarker and therapeutic target.

Forghani R, Wojtkiewicz GR, Zhang Y, Seeburg D, Bautz BR, Pulli B, Milewski AR, Atkinson WL, Iwamoto Y, Zhang ER, Etzrodt M, Rodriguez E, Robbins CS, Swirski FK, Weissleder R, Chen JW.

Radiology. 2012 May;263(2):451-60. doi: 10.1148/radiol.12111593. Epub 2012 Mar 21.


Carotid artery brain aneurysm model: in vivo molecular enzyme-specific MR imaging of active inflammation in a pilot study.

DeLeo MJ 3rd, Gounis MJ, Hong B, Ford JC, Wakhloo AK, Bogdanov AA Jr.

Radiology. 2009 Sep;252(3):696-703. doi: 10.1148/radiol.2523081426. Epub 2009 Jun 22. Erratum in: Radiology. 2009 Dec;253(3):900-1.


Molecular MR imaging of neovascular progression in the Vx2 tumor with αvβ3-targeted paramagnetic nanoparticles.

Schmieder AH, Winter PM, Williams TA, Allen JS, Hu G, Zhang H, Caruthers SD, Wickline SA, Lanza GM.

Radiology. 2013 Aug;268(2):470-80. doi: 10.1148/radiol.13120789. Epub 2013 Jun 14.


Synthesis and evaluation of novel macrocyclic and acyclic ligands as contrast enhancement agents for magnetic resonance imaging.

Chong HS, Garmestani K, Bryant LH Jr, Milenic DE, Overstreet T, Birch N, Le T, Brady ED, Brechbiel MW.

J Med Chem. 2006 Mar 23;49(6):2055-62.


Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques.

Ronald JA, Chen JW, Chen Y, Hamilton AM, Rodriguez E, Reynolds F, Hegele RA, Rogers KA, Querol M, Bogdanov A, Weissleder R, Rutt BK.

Circulation. 2009 Aug 18;120(7):592-9. doi: 10.1161/CIRCULATIONAHA.108.813998. Epub 2009 Aug 3.


Molecular MR Imaging of Myeloperoxidase Distinguishes Steatosis from Steatohepatitis in Nonalcoholic Fatty Liver Disease.

Pulli B, Wojtkiewicz G, Iwamoto Y, Ali M, Zeller MW, Bure L, Wang C, Choi Y, Masia R, Guimaraes AR, Corey KE, Chen JW.

Radiology. 2017 Aug;284(2):390-400. doi: 10.1148/radiol.2017160588. Epub 2017 Mar 30.


Multiple sclerosis: myeloperoxidase immunoradiology improves detection of acute and chronic disease in experimental model.

Pulli B, Bure L, Wojtkiewicz GR, Iwamoto Y, Ali M, Li D, Schob S, Hsieh KL, Jacobs AH, Chen JW.

Radiology. 2015 May;275(2):480-9. doi: 10.1148/radiol.14141495. Epub 2014 Dec 10.


Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis.

Chen JW, Pham W, Weissleder R, Bogdanov A Jr.

Magn Reson Med. 2004 Nov;52(5):1021-8.


Spinal Cord Inflammation: Molecular Imaging after Thoracic Aortic Ischemia Reperfusion Injury.

Albadawi H, Chen JW, Oklu R, Wu Y, Wojtkiewicz G, Pulli B, Milner JD, Cambria RP, Watkins MT.

Radiology. 2017 Jan;282(1):202-211. doi: 10.1148/radiol.2016152222. Epub 2016 Aug 10.


Hepatic hemangiomas: difference in enhancement pattern on 3T MR imaging with gadobenate dimeglumine versus gadoxetate disodium.

Gupta RT, Marin D, Boll DT, Husarik DB, Davis DE, Feuerlein S, Merkle EM.

Eur J Radiol. 2012 Oct;81(10):2457-62. doi: 10.1016/j.ejrad.2011.10.014. Epub 2011 Dec 3.


Normal bladder wall morphology in Gd-DTPA-enhanced clinical MR imaging using an endorectal surface coil and histological assessment of submucosal linear enhancement using [14C]Gd-DOTA autoradiography in an animal model.

Takeda K, Kawaguchi T, Shiraishi T, Kobayashi S, Hayashi N, Yanagawa M, Tochigi H, Sakuma H, Kawamura J, Nakagawa T.

Eur J Radiol. 1998 Feb;26(3):290-6.


Brain tumor enhancement in magnetic resonance imaging at 3 tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular gd-chelate in a rat brain tumor model.

Fries P, Runge VM, Bücker A, Schürholz H, Reith W, Robert P, Jackson C, Lanz T, Schneider G.

Invest Radiol. 2009 Apr;44(4):200-6. doi: 10.1097/RLI.0b013e31819817ff.


Low-dose contrast-enhanced magnetic resonance imaging of brain metastases at 3.0 T using high-relaxivity contrast agents.

Huang B, Liang CH, Liu HJ, Wang GY, Zhang SX.

Acta Radiol. 2010 Feb;51(1):78-84. doi: 10.3109/02841850903350178.


Intraindividual in vivo comparison of gadolinium contrast agents for pharmacokinetic analysis using dynamic contrast enhanced magnetic resonance imaging.

Liang J, Sammet S, Yang X, Jia G, Takayama Y, Knopp MV.

Invest Radiol. 2010 May;45(5):233-44. doi: 10.1097/RLI.0b013e3181d54507.


The synthesis of a D-glucosamine contrast agent, Gd-DTPA-DG, and its application in cancer molecular imaging with MRI.

Zhang W, Chen Y, Guo DJ, Huang ZW, Cai L, He L.

Eur J Radiol. 2011 Sep;79(3):369-74. doi: 10.1016/j.ejrad.2010.10.021. Epub 2010 Nov 23.


Gd(DOTA): an alternative to Gd(DTPA) as a T1,2 relaxation agent for NMR imaging or spectroscopy.

Magerstädt M, Gansow OA, Brechbiel MW, Colcher D, Baltzer L, Knop RH, Girton ME, Naegele M.

Magn Reson Med. 1986 Oct;3(5):808-12.


Magnetic resonance imaging of therapy-induced necrosis using gadolinium-chelated polyglutamic acids.

Jackson EF, Esparza-Coss E, Wen X, Ng CS, Daniel SL, Price RE, Rivera B, Charnsangavej C, Gelovani JG, Li C.

Int J Radiat Oncol Biol Phys. 2007 Jul 1;68(3):830-8. Epub 2007 Mar 26.

Supplemental Content

Support Center