Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 393

1.

Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.

Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA.

J Physiol. 2006 Sep 15;575(Pt 3):901-11. Epub 2006 Jul 6.

2.

Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.

Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ.

J Physiol. 2008 Jan 1;586(1):151-60. Epub 2007 Nov 8.

3.

Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.

Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ.

J Appl Physiol (1985). 2005 Jun;98(6):1985-90. Epub 2005 Feb 10.

4.

Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.

Burgomaster KA, Heigenhauser GJ, Gibala MJ.

J Appl Physiol (1985). 2006 Jun;100(6):2041-7. Epub 2006 Feb 9.

5.

A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.

Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ.

J Physiol. 2010 Mar 15;588(Pt 6):1011-22. doi: 10.1113/jphysiol.2009.181743. Epub 2010 Jan 25.

6.

Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.

Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, Tarnopolsky MA, Gibala MJ.

Exp Physiol. 2014 May 1;99(5):782-91. doi: 10.1113/expphysiol.2013.077453. Epub 2014 Feb 14.

7.

Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.

Jacobs RA, Flück D, Bonne TC, Bürgi S, Christensen PM, Toigo M, Lundby C.

J Appl Physiol (1985). 2013 Sep;115(6):785-93. doi: 10.1152/japplphysiol.00445.2013. Epub 2013 Jun 20.

8.

Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining.

Burgomaster KA, Cermak NM, Phillips SM, Benton CR, Bonen A, Gibala MJ.

Am J Physiol Regul Integr Comp Physiol. 2007 May;292(5):R1970-6. Epub 2007 Feb 15.

9.

Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development.

Mohr M, Krustrup P, Nielsen JJ, Nybo L, Rasmussen MK, Juel C, Bangsbo J.

Am J Physiol Regul Integr Comp Physiol. 2007 Apr;292(4):R1594-602. Epub 2006 Dec 28.

10.

Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans.

Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ.

Am J Physiol Regul Integr Comp Physiol. 2008 Jul;295(1):R236-42. doi: 10.1152/ajpregu.00069.2008. Epub 2008 Apr 23.

11.

Short-term training, muscle glycogen, and cycle endurance.

Green HJ, Ball-Burnett M, Symon S, Grant S, Jamieson G.

Can J Appl Physiol. 1995 Sep;20(3):315-24.

PMID:
8541794
12.

Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment.

Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ.

PLoS One. 2016 Apr 26;11(4):e0154075. doi: 10.1371/journal.pone.0154075. eCollection 2016.

13.

Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling.

Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA, Jeacocke N, Snow RJ, Yeo WK, Burke LM.

J Appl Physiol (1985). 2010 Jul;109(1):126-34. doi: 10.1152/japplphysiol.00950.2009. Epub 2010 May 13.

14.

β-Alanine Supplementation Does Not Augment the Skeletal Muscle Adaptive Response to 6 Weeks of Sprint Interval Training.

Cochran AJ, Percival ME, Thompson S, Gillen JB, MacInnis MJ, Potter MA, Tarnopolsky MA, Gibala MJ.

Int J Sport Nutr Exerc Metab. 2015 Dec;25(6):541-9. doi: 10.1123/ijsnem.2015-0046. Epub 2015 May 22.

PMID:
26008634
15.

Low-volume interval training improves muscle oxidative capacity in sedentary adults.

Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ.

Med Sci Sports Exerc. 2011 Oct;43(10):1849-56. doi: 10.1249/MSS.0b013e3182199834.

PMID:
21448086
16.

High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.

Perry CG, Heigenhauser GJ, Bonen A, Spriet LL.

Appl Physiol Nutr Metab. 2008 Dec;33(6):1112-23. doi: 10.1139/H08-097.

PMID:
19088769
17.

Initial aerobic power does not alter muscle metabolic adaptations to short-term training.

Green H, Grant S, Bombardier E, Ranney D.

Am J Physiol. 1999 Jul;277(1 Pt 1):E39-48.

PMID:
10409126
18.

Physiological and performance adaptations to high-intensity interval training.

Gibala MJ, Jones AM.

Nestle Nutr Inst Workshop Ser. 2013;76:51-60. doi: 10.1159/000350256. Epub 2013 Jul 25. Review.

PMID:
23899754
19.

Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.

Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA.

J Appl Physiol (1985). 2008 Nov;105(5):1462-70. doi: 10.1152/japplphysiol.90882.2008. Epub 2008 Sep 4.

20.

Effects of interval and continuous training on O2 uptake kinetics during severe-intensity exercise initiated from an elevated metabolic baseline.

Da Boit M, Bailey SJ, Callow S, Dimenna FJ, Jones AM.

J Appl Physiol (1985). 2014 Apr 15;116(8):1068-77. doi: 10.1152/japplphysiol.01365.2013. Epub 2014 Feb 13.

Supplemental Content

Support Center