Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.
2.
3.

Sperry versus Hebb: topographic mapping in Isl2/EphA3 mutant mice.

Tsigankov D, Koulakov AA.

BMC Neurosci. 2010 Dec 29;11:155. doi: 10.1186/1471-2202-11-155.

5.

Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system.

Frisén J, Yates PA, McLaughlin T, Friedman GC, O'Leary DD, Barbacid M.

Neuron. 1998 Feb;20(2):235-43.

6.

A relative signalling model for the formation of a topographic neural map.

Reber M, Burrola P, Lemke G.

Nature. 2004 Oct 14;431(7010):847-53.

PMID:
15483613
7.

Loss-of-function analysis of EphA receptors in retinotectal mapping.

Feldheim DA, Nakamoto M, Osterfield M, Gale NW, DeChiara TM, Rohatgi R, Yancopoulos GD, Flanagan JG.

J Neurosci. 2004 Mar 10;24(10):2542-50.

8.

The L1 cell adhesion molecule is essential for topographic mapping of retinal axons.

Demyanenko GP, Maness PF.

J Neurosci. 2003 Jan 15;23(2):530-8.

9.

Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells.

Vo BQ, Bloom AJ, Culican SM.

Vis Neurosci. 2011 Mar;28(2):175-81. doi: 10.1017/S0952523810000386. Epub 2011 Feb 16.

PMID:
21324225
10.

Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity.

O'Leary DD, McLaughlin T.

Prog Brain Res. 2005;147:43-65. Review.

PMID:
15581697
11.

Functional topography and integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A-/- mice.

Haustead DJ, Lukehurst SS, Clutton GT, Bartlett CA, Dunlop SA, Arrese CA, Sherrard RM, Rodger J.

J Neurosci. 2008 Jul 16;28(29):7376-86. doi: 10.1523/JNEUROSCI.1135-08.2008.

12.

Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system.

Rashid T, Upton AL, Blentic A, Ciossek T, Knöll B, Thompson ID, Drescher U.

Neuron. 2005 Jul 7;47(1):57-69.

13.
14.

Key roles of Ephs and ephrins in retinotectal topographic map formation.

Scicolone G, Ortalli AL, Carri NG.

Brain Res Bull. 2009 Jun 30;79(5):227-47. doi: 10.1016/j.brainresbull.2009.03.008. Epub 2009 Apr 1. Review.

PMID:
19480983
15.

Robos are required for the correct targeting of retinal ganglion cell axons in the visual pathway of the brain.

Plachez C, Andrews W, Liapi A, Knoell B, Drescher U, Mankoo B, Zhe L, Mambetisaeva E, Annan A, Bannister L, Parnavelas JG, Richards LJ, Sundaresan V.

Mol Cell Neurosci. 2008 Apr;37(4):719-30. doi: 10.1016/j.mcn.2007.12.017. Epub 2007 Dec 23.

PMID:
18272390
16.

Topographic guidance labels in a sensory projection to the forebrain.

Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisén J, Lu Q, Barbacid M, Flanagan JG.

Neuron. 1998 Dec;21(6):1303-13.

17.

A stochastic model for retinocollicular map development.

Koulakov AA, Tsigankov DN.

BMC Neurosci. 2004 Aug 31;5:30.

18.

Balancing of ephrin/Eph forward and reverse signaling as the driving force of adaptive topographic mapping.

Gebhardt C, Bastmeyer M, Weth F.

Development. 2012 Jan;139(2):335-45. doi: 10.1242/dev.070474. Epub 2011 Dec 7.

19.

Different roles of axon guidance cues and patterned spontaneous activity in establishing receptive fields in the mouse superior colliculus.

Liu M, Wang L, Cang J.

Front Neural Circuits. 2014 Mar 26;8:23. doi: 10.3389/fncir.2014.00023. eCollection 2014.

20.

Analysis of local and global topographic order in mouse retinocollicular maps.

Willshaw DJ, Sterratt DC, Teriakidis A.

J Neurosci. 2014 Jan 29;34(5):1791-805. doi: 10.1523/JNEUROSCI.5602-12.2014.

Supplemental Content

Support Center