Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Deutsch-jozsa algorithm using triggered single photons from a single quantum dot.

Scholz M, Aichele T, Ramelow S, Benson O.

Phys Rev Lett. 2006 May 12;96(18):180501. Epub 2006 May 11.

PMID:
16712351
2.

Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer.

Gulde S, Riebe M, Lancaster GP, Becher C, Eschner J, Häffner H, Schmidt-Kaler F, Chuang IL, Blatt R.

Nature. 2003 Jan 2;421(6918):48-50.

PMID:
12511949
3.

Experimental realization of a four-photon seven-qubit graph state for one-way quantum computation.

Lee SM, Park HS, Cho J, Kang Y, Lee JY, Kim H, Lee DH, Choi SK.

Opt Express. 2012 Mar 26;20(7):6915-26. doi: 10.1364/OE.20.006915.

PMID:
22453369
4.

Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage.

Wei YJ, He YM, Chen MC, Hu YN, He Y, Wu D, Schneider C, Kamp M, Höfling S, Lu CY, Pan JW.

Nano Lett. 2014 Nov 12;14(11):6515-9. doi: 10.1021/nl503081n. Epub 2014 Oct 30.

PMID:
25357153
5.

Single-photon three-qubit quantum logic using spatial light modulators.

Kagalwala KH, Di Giuseppe G, Abouraddy AF, Saleh BEA.

Nat Commun. 2017 Sep 29;8(1):739. doi: 10.1038/s41467-017-00580-x.

6.
7.

Use of non-adiabatic geometric phase for quantum computing by NMR.

Das R, Kumar SK, Kumar A.

J Magn Reson. 2005 Dec;177(2):318-28. Epub 2005 Sep 22.

PMID:
16182577
8.

Ultrafast optical control of individual quantum dot spin qubits.

De Greve K, Press D, McMahon PL, Yamamoto Y.

Rep Prog Phys. 2013 Sep;76(9):092501. doi: 10.1088/0034-4885/76/9/092501. Epub 2013 Sep 4. Review.

PMID:
24006335
9.

Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm.

Mohseni M, Lundeen JS, Resch KJ, Steinberg AM.

Phys Rev Lett. 2003 Oct 31;91(18):187903. Epub 2003 Oct 31.

PMID:
14611316
10.

Subnatural linewidth single photons from a quantum dot.

Matthiesen C, Vamivakas AN, Atatüre M.

Phys Rev Lett. 2012 Mar 2;108(9):093602. Epub 2012 Feb 28.

PMID:
22463634
11.

Generating single microwave photons in a circuit.

Houck AA, Schuster DI, Gambetta JM, Schreier JA, Johnson BR, Chow JM, Frunzio L, Majer J, Devoret MH, Girvin SM, Schoelkopf RJ.

Nature. 2007 Sep 20;449(7160):328-31.

PMID:
17882217
12.

Deterministic photon pairs and coherent optical control of a single quantum dot.

Jayakumar H, Predojević A, Huber T, Kauten T, Solomon GS, Weihs G.

Phys Rev Lett. 2013 Mar 29;110(13):135505. Epub 2013 Mar 26.

PMID:
23581338
13.

On-demand semiconductor single-photon source with near-unity indistinguishability.

He YM, He Y, Wei YJ, Wu D, Atatüre M, Schneider C, Höfling S, Kamp M, Lu CY, Pan JW.

Nat Nanotechnol. 2013 Mar;8(3):213-7. doi: 10.1038/nnano.2012.262. Epub 2013 Feb 3.

PMID:
23377455
14.

Single photons on demand from a single molecule at room temperature.

Lounis B, Moerner WE.

Nature. 2000 Sep 28;407(6803):491-3.

PMID:
11028995
15.

Robust quantum communication using a polarization-entangled photon pair.

Boileau JC, Laflamme R, Laforest M, Myers CR.

Phys Rev Lett. 2004 Nov 26;93(22):220501. Epub 2004 Nov 22.

PMID:
15601072
16.

Universal fault-tolerant quantum computation on decoherence-free subspaces

Bacon D, Kempe J, Lidar DA, Whaley KB.

Phys Rev Lett. 2000 Aug 21;85(8):1758-61.

PMID:
10970607
17.

Nonadiabatic holonomic quantum computation in decoherence-free subspaces.

Xu GF, Zhang J, Tong DM, Sjöqvist E, Kwek LC.

Phys Rev Lett. 2012 Oct 26;109(17):170501. Epub 2012 Oct 24.

PMID:
23215167
18.

Deterministic controlled-NOT gate for single-photon two-qubit quantum logic.

Fiorentino M, Wong FN.

Phys Rev Lett. 2004 Aug 13;93(7):070502. Epub 2004 Aug 11.

PMID:
15324219
19.

Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography.

Gschrey M, Thoma A, Schnauber P, Seifried M, Schmidt R, Wohlfeil B, Krüger L, Schulze JH, Heindel T, Burger S, Schmidt F, Strittmatter A, Rodt S, Reitzenstein S.

Nat Commun. 2015 Jul 16;6:7662. doi: 10.1038/ncomms8662.

20.

Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.

Dragoman D, Dragoman M.

Nanotechnology. 2015 Dec 4;26(48):485201. doi: 10.1088/0957-4484/26/48/485201. Epub 2015 Nov 6.

PMID:
26541203

Supplemental Content

Support Center