Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 172

1.
2.

Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations.

Beltran G, Novo M, Rozès N, Mas A, Guillamón JM.

FEMS Yeast Res. 2004 Mar;4(6):625-32.

4.

Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae.

Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J.

Yeast. 1999 Feb;15(3):191-203.

5.

Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.

Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B.

Mol Cell Biol. 2007 Apr;27(8):3065-86. Epub 2007 Feb 16.

6.

Carbon and nitrogen sources regulate delta-aminolevulinic acid and gamma-aminobutyric acid transport in Saccharomyces cerevisiae.

Correa García S, Bermúdez Moretti M, Ramos E, Batlle A.

Int J Biochem Cell Biol. 1997 Aug-Sep;29(8-9):1097-101.

PMID:
9416005
7.

Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures.

Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran JM.

FEMS Yeast Res. 2007 Jun;7(4):604-20. Epub 2007 Apr 10.

8.

Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae.

Hartig A, Simon MM, Schuster T, Daugherty JR, Yoo HS, Cooper TG.

Nucleic Acids Res. 1992 Nov 11;20(21):5677-86.

10.

A family of ammonium transporters in Saccharomyces cerevisiae.

Marini AM, Soussi-Boudekou S, Vissers S, Andre B.

Mol Cell Biol. 1997 Aug;17(8):4282-93.

11.

Hal4 and Hal5 protein kinases are required for general control of carbon and nitrogen uptake and metabolism.

Pérez-Valle J, Rothe J, Primo C, Martínez Pastor M, Ariño J, Pascual-Ahuir A, Mulet JM, Serrano R, Yenush L.

Eukaryot Cell. 2010 Dec;9(12):1881-90. doi: 10.1128/EC.00184-10. Epub 2010 Oct 15.

12.

Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation.

Usaite R, Patil KR, Grotkjaer T, Nielsen J, Regenberg B.

Appl Environ Microbiol. 2006 Sep;72(9):6194-203.

13.

Import of branched-chain amino acids in Saccharomyces cerevisiae.

Didion T, Grauslund M, Kielland-Brandt MC, Andersen HA.

Folia Microbiol (Praha). 1996;41(1):87. No abstract available.

PMID:
9090831
14.

Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae.

Zhao X, Zou H, Fu J, Chen J, Zhou J, Du G.

Yeast. 2013 Nov;30(11):437-47. doi: 10.1002/yea.2980. Epub 2013 Sep 10.

15.

Carnitine acetyltransferases are required for growth on non-fermentable carbon sources but not for pathogenesis in Candida albicans.

Zhou H, Lorenz MC.

Microbiology. 2008 Feb;154(Pt 2):500-9. doi: 10.1099/mic.0.2007/014555-0.

PMID:
18227254
16.

Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae.

Marini AM, Vissers S, Urrestarazu A, André B.

EMBO J. 1994 Aug 1;13(15):3456-63.

17.

Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism.

Smith DG, Garcia-Pedrajas MD, Gold SE, Perlin MH.

Mol Microbiol. 2003 Oct;50(1):259-75.

18.

Gene regulatory changes in yeast during life extension by nutrient limitation.

Wang J, Jiang JC, Jazwinski SM.

Exp Gerontol. 2010 Aug;45(7-8):621-31. doi: 10.1016/j.exger.2010.02.008. Epub 2010 Feb 21.

20.

Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans.

Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M.

PLoS Pathog. 2009 Oct;5(10):e1000612. doi: 10.1371/journal.ppat.1000612. Epub 2009 Oct 9.

Supplemental Content

Support Center