Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 39

1.

Carbon Dioxide Fixation into Oxalacetate in Higher Plants.

Mazelis M, Vennesland B.

Plant Physiol. 1957 Nov;32(6):591-600. No abstract available.

2.

Fixation of carbon dioxide by a plant oxalacetate carboxylase.

GOLLUB MC, VENNESLAND B.

J Biol Chem. 1947 Jun;169(1):233. No abstract available.

PMID:
20240561
3.
4.

Enzymatic incorporation of carbon dioxide in oxalacetate in pigeon liver.

VEIGA SALLES JB, HARARY I, BANFI RF, OCHOA S.

Nature. 1950 Apr 29;165(4200):675-6. No abstract available.

PMID:
15416768
5.

The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide.

BANDURSKI RS, GREINER CM.

J Biol Chem. 1953 Oct;204(2):781-6. No abstract available.

7.

Carbon Dioxide Fixation by Etiolated Plants after Exposure to White Light.

Tolbert NE, Gailey FB.

Plant Physiol. 1955 Nov;30(6):491-9. No abstract available.

8.

Indirect radiative forcing of climate change through ozone effects on the land-carbon sink.

Sitch S, Cox PM, Collins WJ, Huntingford C.

Nature. 2007 Aug 16;448(7155):791-4. Epub 2007 Jul 25.

PMID:
17653194
9.

Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume.

Rogers A, Gibon Y, Stitt M, Morgan PB, Bernacchi CJ, Ort DR, Long SP.

Plant Cell Environ. 2006 Aug;29(8):1651-8.

10.

Uptake and allocation of carbon and nitrogen in Vicia narbonensis plants with increased seed sink strength achieved by seed-specific expression of an amino acid permease.

Götz KP, Staroske N, Radchuk R, Emery RJ, Wutzke KD, Herzog H, Weber H.

J Exp Bot. 2007;58(12):3183-95. Epub 2007 Aug 28.

PMID:
17728294
11.

Characteristics of leaf photosynthesis and simulated individual carbon budget in Primula nutans under contrasting light and temperature conditions.

Shen H, Tang Y, Muraoka H, Washitani I.

J Plant Res. 2008 Mar;121(2):191-200. doi: 10.1007/s10265-008-0146-z. Epub 2008 Feb 15.

PMID:
18274702
13.

Projected increase in continental runoff due to plant responses to increasing carbon dioxide.

Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DM, Webb MJ.

Nature. 2007 Aug 30;448(7157):1037-41.

PMID:
17728755
14.
15.
16.

Tropical spiderwort (Commelina benghalensis L.) increases growth under elevated atmospheric carbon dioxide.

Price AJ, Runion GB, Prior SA, Rogers HH, Torbert HA.

J Environ Qual. 2009 Feb 25;38(2):729-33. doi: 10.2134/jeq2007.0621. Print 2009 Mar-Apr.

PMID:
19244494
17.

Carbon-negative biofuels from low-input high-diversity grassland biomass.

Tilman D, Hill J, Lehman C.

Science. 2006 Dec 8;314(5805):1598-600.

18.

Net carbon dioxide losses of northern ecosystems in response to autumn warming.

Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T.

Nature. 2008 Jan 3;451(7174):49-52. doi: 10.1038/nature06444.

PMID:
18172494
19.

Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi.

Ford CR, Wurzburger N, Hendrick RL, Teskey RO.

Tree Physiol. 2007 Mar;27(3):375-83.

PMID:
17241979
20.

Supplemental Content

Support Center