Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 209

1.

Biologically inspired artificial compound eyes.

Jeong KH, Kim J, Lee LP.

Science. 2006 Apr 28;312(5773):557-61.

3.

Artificial ommatidia by self-aligned microlenses and waveguides.

Kim J, Jeong KH, Lee LP.

Opt Lett. 2005 Jan 1;30(1):5-7.

PMID:
15648619
4.

Micro-optical artificial compound eyes.

Duparré JW, Wippermann FC.

Bioinspir Biomim. 2006 Mar;1(1):R1-16. Epub 2006 Apr 6. Review.

PMID:
17671298
5.

A simple route to fabricate artificial compound eye structures.

Qu P, Chen F, Liu H, Yang Q, Lu J, Si J, Wang Y, Hou X.

Opt Express. 2012 Feb 27;20(5):5775-82. doi: 10.1364/OE.20.005775.

PMID:
22418383
6.

Optical properties of a bio-inspired gradient refractive index polymer lens.

Beadie G, Shirk JS, Rosenberg A, Lane PA, Fleet E, Kamdar AR, Jin Y, Ponting M, Kazmierczak T, Yang Y, Hiltner A, Baer E.

Opt Express. 2008 Jul 21;16(15):11540-7.

PMID:
18648475
7.

Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics.

Stavenga DG.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Jan;189(1):1-17. Epub 2002 Dec 10.

PMID:
12548425
8.

Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism.

Marcos S, Rosales P, Llorente L, Barbero S, Jiménez-Alfaro I.

Vision Res. 2008 Jan;48(1):70-9. Epub 2007 Dec 3.

9.

The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects.

Stollberg K, Brückner A, Duparré J, Dannberg P, Bräuer A, Tünnermann A.

Opt Express. 2009 Aug 31;17(18):15747-59. doi: 10.1364/OE.17.015747.

PMID:
19724574
10.

Morphology of the compound eyes of Nebalia herbstii Leach, 1814 (Leptostraca, Nebaliidae).

Gross A, Melzer RR.

J Submicrosc Cytol Pathol. 2002 Oct;34(4):415-24.

PMID:
12585230
11.

A high numerical aperture, polymer-based, planar microlens array.

Tripathi A, Chokshi TV, Chronis N.

Opt Express. 2009 Oct 26;17(22):19908-18. doi: 10.1364/OE.17.019908.

PMID:
19997214
12.

Changes in spherical aberration after lens refilling with a silicone oil.

Wong KH, Koopmans SA, Terwee T, Kooijman AC.

Invest Ophthalmol Vis Sci. 2007 Mar;48(3):1261-7.

PMID:
17325171
13.

Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets.

Kang D, Pang C, Kim SM, Cho HS, Um HS, Choi YW, Suh KY.

Adv Mater. 2012 Apr 3;24(13):1709-15. doi: 10.1002/adma.201104507. Epub 2012 Mar 5.

PMID:
22388770
14.

Calcitic microlenses as part of the photoreceptor system in brittlestars.

Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G.

Nature. 2001 Aug 23;412(6849):819-22.

PMID:
11518966
15.
16.
17.

Optofluidic compound microlenses made by emulsion techniques.

Calixto S, Rosete-Aguilar M, Sanchez-Marin FJ, Marañon V, Arauz-Lara JL, Olivares DM, Calixto-Solano M, Martinez-Prado EM.

Opt Express. 2010 Aug 30;18(18):18703-11. doi: 10.1364/OE.18.018703.

PMID:
20940763
18.

Optical characterization of adaptive fluidic silicone-membrane lenses.

Schneider F, Draheim J, Kamberger R, Waibel P, Wallrabe U.

Opt Express. 2009 Jul 6;17(14):11813-21.

PMID:
19582096
19.

Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system.

Stürzl W, Boeddeker N, Dittmar L, Egelhaaf M.

Bioinspir Biomim. 2010 Sep;5(3):036002. doi: 10.1088/1748-3182/5/3/036002. Epub 2010 Aug 6.

PMID:
20689158

Supplemental Content

Support Center