Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 155

1.

The role of alpha-iron and cementite phases in the growing mechanism of carbon nanotubes: a 57Fe Mössbauer spectroscopy study.

Pérez-Cabero M, Taboada JB, Guerrero-Ruiz A, Overweg AR, Rodríguez-Ramos I.

Phys Chem Chem Phys. 2006 Mar 14;8(10):1230-5. Epub 2006 Feb 6.

PMID:
16633604
3.

Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.

Li Z, Dervishi E, Xu Y, Ma X, Saini V, Biris AS, Little R, Biris AR, Lupu D.

J Chem Phys. 2008 Aug 21;129(7):074712. doi: 10.1063/1.2971180.

PMID:
19044797
4.

57Fe Mössbauer spectroscopy on multiwalled carbon nanotubes with metal filling.

Lottermoser W, Schaper AK, Treutmann W, Redhammer G, Tippelt G, Lichtenberger A, Weber SU, Amthauer G.

J Phys Chem B. 2006 May 25;110(20):9768-71.

PMID:
16706424
5.

Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system.

Coquay P, Peigney A, De Grave E, Flahaut E, Vandenberghe RE, Laurent C.

J Phys Chem B. 2005 Sep 29;109(38):17813-24.

PMID:
16853284
6.

Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 2. The CNT-Fe/Co-MgAl2O4 system.

Coquay P, Flahaut E, De Grave E, Peigney A, Vandenberghe RE, Laurent C.

J Phys Chem B. 2005 Sep 29;109(38):17825-30.

PMID:
16853285
7.

Rapid freeze-quench 57Fe Mössbauer spectroscopy: monitoring changes of an iron-containing active site during a biochemical reaction.

Krebs C, Price JC, Baldwin J, Saleh L, Green MT, Bollinger JM Jr.

Inorg Chem. 2005 Feb 21;44(4):742-57.

PMID:
15859243
8.

Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.

Chen W, Fan Z, Pan X, Bao X.

J Am Chem Soc. 2008 Jul 23;130(29):9414-9. doi: 10.1021/ja8008192. Epub 2008 Jun 25.

PMID:
18576652
9.

Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.

Steiner SA 3rd, Baumann TF, Kong J, Satcher JH Jr, Dresselhaus MS.

Langmuir. 2007 Apr 24;23(9):5161-6. Epub 2007 Mar 24.

PMID:
17381146
10.

Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes.

Donato MG, Galvagno S, Lanza M, Messina G, Milone C, Piperopoulos E, Pistone A, Santangelo S.

J Nanosci Nanotechnol. 2009 Jun;9(6):3815-23.

PMID:
19504925
11.

Direct synthesis of carbon nanofibers from South African coal fly ash.

Hintsho N, Shaikjee A, Masenda H, Naidoo D, Billing D, Franklyn P, Durbach S.

Nanoscale Res Lett. 2014 Aug 10;9(1):387. doi: 10.1186/1556-276X-9-387. eCollection 2014.

12.

Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts.

Ko JR, Ahn WS.

J Nanosci Nanotechnol. 2006 Nov;6(11):3442-5.

PMID:
17252785
13.

Synthesis, characterization, and stability of Fe-MCM-41 for production of carbon nanotubes by acetylene pyrolysis.

Amama PB, Lim S, Ciuparu D, Yang Y, Pfefferle L, Haller GL.

J Phys Chem B. 2005 Feb 24;109(7):2645-56.

PMID:
16851270
14.

Incorporation, oxidation and pyrolysis of ferrocene into porous silica glass: a route to different silica/carbon and silica/iron oxide nanocomposites.

Schnitzler MC, Mangrich AS, Macedo WA, Ardisson JD, Zarbin AJ.

Inorg Chem. 2006 Dec 25;45(26):10642-50.

PMID:
17173419
15.

Effect of Nitrogen and Hydrogen Gases on the Synthesis of Carbon Nanomaterials from Coal Waste Fly Ash as a Catalyst.

Hintsho N, Shaikjee A, Triphati PK, Masenda H, Naidoo D, Franklyn P, Durbach S.

J Nanosci Nanotechnol. 2016 May;16(5):4672-83.

PMID:
27483807
16.

Investigation of iron pools in cucumber roots by Mössbauer spectroscopy: direct evidence for the Strategy I iron uptake mechanism.

Kovács K, Kuzmann E, Tatár E, Vértes A, Fodor F.

Planta. 2009 Jan;229(2):271-8. doi: 10.1007/s00425-008-0826-x. Epub 2008 Oct 2.

PMID:
18830704
17.

Electron energy loss spectroscopy (EELS) of iron Fischer-Tropsch catalysts.

Jin Y, Xu H, Datye AK.

Microsc Microanal. 2006 Apr;12(2):124-34.

PMID:
17481348
18.

Iron changes in natural and Fe(III) loaded montmorillonite during carbon nanotube growth.

Bakandritsos A, Simopoulos A, Petridis D.

Nanotechnology. 2006 Feb 28;17(4):1112-7. doi: 10.1088/0957-4484/17/4/044. Epub 2006 Feb 2.

PMID:
21727389
19.

Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition.

Labunov VA, Basaev AS, Shulitski BG, Shaman YP, Komissarov I, Prudnikava AL, Tay BK, Shakerzadeh M.

Nanoscale Res Lett. 2012 Feb 2;7:102. doi: 10.1186/1556-276X-7-102.

20.

Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method.

Abdulkareem AS, Afolabi AS, Iyuke SE, Vz Pienaar HC.

J Nanosci Nanotechnol. 2007 Sep;7(9):3233-8.

PMID:
18019155

Supplemental Content

Support Center