Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 68

1.

Differential protein expression of murine macrophages upon interaction with Candida albicans.

Martínez-Solano L, Nombela C, Molero G, Gil C.

Proteomics. 2006 Apr;6 Suppl 1:S133-44.

PMID:
16544287
2.

Proteomics of RAW 264.7 macrophages upon interaction with heat-inactivated Candida albicans cells unravel an anti-inflammatory response.

Martínez-Solano L, Reales-Calderón JA, Nombela C, Molero G, Gil C.

Proteomics. 2009 Jun;9(11):2995-3010. doi: 10.1002/pmic.200800016.

PMID:
19526544
3.

Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction.

Fernández-Arenas E, Cabezón V, Bermejo C, Arroyo J, Nombela C, Diez-Orejas R, Gil C.

Mol Cell Proteomics. 2007 Mar;6(3):460-78. Epub 2006 Dec 12.

4.
5.
6.

Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus.

Reales-Calderón JA, Martínez-Solano L, Martínez-Gomariz M, Nombela C, Molero G, Gil C.

J Proteomics. 2012 Aug 3;75(15):4734-46. doi: 10.1016/j.jprot.2012.01.037. Epub 2012 Feb 9.

PMID:
22342486
7.

Gene targeting demonstrates that inducible nitric oxide synthase is not essential for resistance to oral candidiasis in mice, or for killing of Candida albicans by macrophages in vitro.

Farah CS, Saunus JM, Hu Y, Kazoullis A, Ashman RB.

Oral Microbiol Immunol. 2009 Feb;24(1):83-8. doi: 10.1111/j.1399-302X.2008.00462.x.

PMID:
19121076
8.

Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.

Moran GP, MacCallum DM, Spiering MJ, Coleman DC, Sullivan DJ.

Mol Microbiol. 2007 Nov;66(4):915-29. Epub 2007 Oct 10.

9.

Influence of aging on murine neutrophil and macrophage function against Candida albicans.

Murciano C, Yáñez A, O'Connor JE, Gozalbo D, Gil ML.

FEMS Immunol Med Microbiol. 2008 Jul;53(2):214-21. doi: 10.1111/j.1574-695X.2008.00418.x. Epub 2008 Apr 28.

10.

Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling.

Jouault T, El Abed-El Behi M, Martínez-Esparza M, Breuilh L, Trinel PA, Chamaillard M, Trottein F, Poulain D.

J Immunol. 2006 Oct 1;177(7):4679-87.

11.

Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC 7942.

Koksharova OA, Klint J, Rasmussen U.

Microbiology. 2007 Aug;153(Pt 8):2505-17.

PMID:
17660415
12.

Immunoproteomic analysis of the protective response obtained from vaccination with Candida albicans ecm33 cell wall mutant in mice.

Martínez-López R, Nombela C, Diez-Orejas R, Monteoliva L, Gil C.

Proteomics. 2008 Jul;8(13):2651-64. doi: 10.1002/pmic.200701056.

PMID:
18546157
13.

Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics.

Reales-Calderón JA, Sylvester M, Strijbis K, Jensen ON, Nombela C, Molero G, Gil C.

J Proteomics. 2013 Oct 8;91:106-35. doi: 10.1016/j.jprot.2013.06.026. Epub 2013 Jul 5.

PMID:
23832136
14.

The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans.

Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, Beckhouse AG, Lo YL, Manzanero S, Cobbold C, Schroder K, Ma B, Orr S, Stewart L, Lebus D, Sobieszczuk P, Hume DA, Stow J, Blanchard H, Ashman RB.

J Immunol. 2008 Jun 1;180(11):7404-13.

15.

Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans.

Bugarcic A, Hitchens K, Beckhouse AG, Wells CA, Ashman RB, Blanchard H.

Glycobiology. 2008 Sep;18(9):679-85. doi: 10.1093/glycob/cwn046. Epub 2008 May 28.

PMID:
18509109
16.

Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes.

Fernández-Arenas E, Bleck CK, Nombela C, Gil C, Griffiths G, Diez-Orejas R.

Cell Microbiol. 2009 Apr;11(4):560-89. doi: 10.1111/j.1462-5822.2008.01274.x. Epub 2008 Dec 24.

PMID:
19134116
17.
18.

Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages.

Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, Mottaz HM, Norbeck AD, Purvine SO, Manes NP, Smallwood HS, Wang H, Forbes J, Gros P, Uzzau S, Rodland KD, Heffron F, Smith RD, Squier TC.

J Biol Chem. 2006 Sep 29;281(39):29131-40. Epub 2006 Aug 7.

19.

Application of saturation dye 2D-DIGE proteomics to characterize proteins modulated by oxidized low density lipoprotein treatment of human macrophages.

Dupont A, Chwastyniak M, Beseme O, Guihot AL, Drobecq H, Amouyel P, Pinet F.

J Proteome Res. 2008 Aug;7(8):3572-82. doi: 10.1021/pr700683s. Epub 2008 Jun 13.

PMID:
18549265
20.

Supplemental Content

Support Center