Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 738

1.
3.

Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production.

Wong MS, Wu S, Causey TB, Bennett GN, San KY.

Metab Eng. 2008 Mar;10(2):97-108. doi: 10.1016/j.ymben.2007.10.003. Epub 2007 Nov 17.

PMID:
18164227
4.

Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products.

Hernández-Montalvo V, Martínez A, Hernández-Chavez G, Bolivar F, Valle F, Gosset G.

Biotechnol Bioeng. 2003 Sep 20;83(6):687-94.

PMID:
12889033
5.

Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions.

Lara AR, Vazquez-Limón C, Gosset G, Bolívar F, López-Munguía A, Ramírez OT.

Biotechnol Bioeng. 2006 Aug 20;94(6):1164-75.

PMID:
16718678
6.

Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli.

Báez-Viveros JL, Osuna J, Hernández-Chávez G, Soberón X, Bolívar F, Gosset G.

Biotechnol Bioeng. 2004 Aug 20;87(4):516-24.

PMID:
15286989
7.

Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production.

Fuentes LG, Lara AR, Martínez LM, Ramírez OT, Martínez A, Bolívar F, Gosset G.

Microb Cell Fact. 2013 May 2;12:42. doi: 10.1186/1475-2859-12-42.

8.

Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions.

Wang Q, Wu C, Chen T, Chen X, Zhao X.

Biotechnol Lett. 2006 Jan;28(2):89-93. Erratum in: Biotechnol Lett. 2006 Feb;28(3):203.

PMID:
16369691
9.

Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli.

Xu B, Jahic M, Enfors SO.

Biotechnol Prog. 1999 Jan-Feb;15(1):81-90.

PMID:
9933517
10.
11.

Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli.

Andersson C, Hodge D, Berglund KA, Rova U.

Biotechnol Prog. 2007 Mar-Apr;23(2):381-8. Epub 2007 Jan 25.

PMID:
17253726
12.

Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control.

Bäcklund E, Markland K, Larsson G.

Bioprocess Biosyst Eng. 2008 Jan;31(1):11-20. Epub 2007 Sep 27.

PMID:
17899203
14.

Comparison of different strategies to reduce acetate formation in Escherichia coli.

De Mey M, Lequeux GJ, Beauprez JJ, Maertens J, Van Horen E, Soetaert WK, Vanrolleghem PA, Vandamme EJ.

Biotechnol Prog. 2007 Sep-Oct;23(5):1053-63. Epub 2007 Aug 23.

PMID:
17715942
15.
16.
17.

Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway.

Flores S, de Anda-Herrera R, Gosset G, Bolívar FG.

Biotechnol Bioeng. 2004 Aug 20;87(4):485-94.

PMID:
15286986
18.

Production of interferon alpha A by Escherichia coli W3110 (pEC901).

Kang F, Ye Q, Yu J, Zhang S.

Chin J Biotechnol. 1993;9(4):273-9.

PMID:
8061237
19.

Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction.

Aristidou AA, San KY, Bennett GN.

Biotechnol Prog. 1995 Jul-Aug;11(4):475-8.

PMID:
7654314
20.

Role of xylose transporters in xylitol production from engineered Escherichia coli.

Khankal R, Chin JW, Cirino PC.

J Biotechnol. 2008 Apr 30;134(3-4):246-52. doi: 10.1016/j.jbiotec.2008.02.003. Epub 2008 Feb 15.

PMID:
18359531

Supplemental Content

Support Center